Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (4) : 560-564    https://doi.org/10.1007/s12200-016-0526-2
RESEARCH ARTICLE
All-optical bistable switching, hard-limiter and wavelength-controlled power source
Mehdi SHIRDEL,Mohammad Ali MANSOURI-BIRJANDI()
Faculty of Electrical and Computer Engineering, University of Sistan and Baluchestan (USB), Zahedan 98164-161, Iran
 Download: PDF(296 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, an all-optical bistable switching operation of resonant-tunneling devices with ultra-small photonic crystal cavity was demonstrated. The whole structure was based on a square lattice photonic crystal formed by rods of refractive index nr=3.4 in an air background. The cavity was surrounded by eight nonlinear rods of refractive index nL0=3.1 and nonlinear Kerr coefficient n2=9×10−17 W/m2. Nonlinear finite difference time domain method was used to get a bistability hysteresis loop. Next, all-optical wavelength controlled power source (WCPS), hard-limiter and switching operation based on optical nonlinearity were shown. And that small cavity structure has a small length of 12 mm. Considering the numerous applications and small length, this proposed structure has various potential function in all-optical circuits.

Keywords all-optical      bistability      Kerr nonlinearity      photonic crystal cavity      switching     
Corresponding Author(s): Mohammad Ali MANSOURI-BIRJANDI   
Online First Date: 18 February 2016    Issue Date: 29 November 2016
 Cite this article:   
Mehdi SHIRDEL,Mohammad Ali MANSOURI-BIRJANDI. All-optical bistable switching, hard-limiter and wavelength-controlled power source[J]. Front. Optoelectron., 2016, 9(4): 560-564.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0526-2
https://academic.hep.com.cn/foe/EN/Y2016/V9/I4/560
Fig.1  (a) Structure of photonic crystal all-optical switch based on nonlinear cavity. The whole structure was based on a square lattice photonic crystal of lattice constant of a = 600 nm, formed by rods of refractive index nr= 3.4 in an air background. Fill factor of structure was r/a = 0.2 and Kerr coefficient of nonlinear rod was n2 = 9×10−17 W/m2; (b) the proposed structure based on slab photonic crystal
Fig.2  TM-band structure 2D photonic crystal formed by rods of refractive index nr= 3.4 in an air background
Fig.3  Transmission spectrum of the proposed structure for Pin=1 and 15 W/mm
Fig.4  Dependence of Pout as a function of Pin for l=1547.00 nm
Fig.5  (a) Pout as a function of Pin for l=1546.70 to 1547.45 nm; (b) dependence of Pout on the wavelength for Pin=55 W/mm (in the range of Pin>30 W/mm)
Fig.6  Input and output pulses for l=1546.70, 1547.00 and 1547.30 nm
Fig.7  (a) Schematic of structure with CW input and control pulses; (b) temporal behavior of the control pulse and normalized output signal with and without control pulse
1 Wang H Z, Zhou W M, Zheng J P. A 2D rods-in-air square-lattice photonic crystal optical switch. Optik (Stuttgart), 2010, 121(21): 1988–1993
https://doi.org/10.1016/j.ijleo.2009.06.002
2 Mansouri-Birjandi M A, Moravvej-Farshi M K, Rostami A. Ultrafast low-threshold all-optical switch implemented by arrays of ring resonators coupled to a Mach-Zehnder interferometer arm: based on 2D photonic crystals. Applied Optics, 2008, 47(27): 5041–5050
https://doi.org/10.1364/AO.47.005041 pmid: 18806866
3 Gibbs H M. Optical Bistability: Controlling Light with Light, Quantum Electronics–Principles and Applications. Orlando Fl: Academic Press, 1985
4 Huybrechts K, Baets R, Morthier G. All-optical flip-flop operation in a standard tunable DBR laser diode. IEEE Photonics Technology Letters, 2009, 21(24): 1873–1875
https://doi.org/10.1109/LPT.2009.2035169
5 Liu L, Kumar R, Huybrechts K, Spuesens T, Roelkens G, Geluk E J, de Vries T, Regreny P, Van Thourhout D, Baets R, Morthier G. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip. Nature Photonics, 2010, 4(3): 182–187
https://doi.org/10.1038/nphoton.2009.268
6 Yanik M F, Fan S, Soljačić M, Joannopoulos J D. All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry. Optics Letters, 2003, 28(24): 2506–2508
https://doi.org/10.1364/OL.28.002506 pmid: 14690129
7 Kim M K, Hwang I K, Kim S H, Chang H J, Lee Y H. All-optical bistable switching in curved microfiber-coupled photonic crystal resonators. Applied Physics Letters, 2007, 90(16): 161118
https://doi.org/10.1063/1.2724921
8 Priem G, Dumon P, Bogaerts W, Van Thourhout D, Morthier G, Baets R. Optical bistability and pulsating behaviour in silicon-on-insulator ring resonator structures. Optics Express, 2005, 13(23): 9623–9628
https://doi.org/10.1364/OPEX.13.009623 pmid: 19503165
9 Ogusu K, Takayama K. Optical bistability in photonic crystal microrings with nonlinear dielectric materials. Optics Express, 2008, 16(10): 7525–7539
https://doi.org/10.1364/OE.16.007525 pmid: 18545458
10 Yanik M F, Fan S, Soljačić M. High-contrast all-optical bistable switching in photonic crystal microcavities. Applied Physics Letters, 2003, 83(14): 2739–2741
https://doi.org/10.1063/1.1615835
11 Chen M, Li C, Xu M, Wang W, Xia Y, Ma S. Optical bistable device based on one-dimensional photonic crystal waveguide. Optics Communications, 2005, 255(1–3): 46–50
https://doi.org/10.1016/j.optcom.2005.05.036
12 Li C, Wu J, Xu W. Influence of two-photon absorption on bistable switching in a silicon photonic crystal microcavity. Optics Communications, 2010, 283(14): 2957–2960
https://doi.org/10.1016/j.optcom.2010.03.053
13 Wurtz G A, Pollard R, Zayats A V. Optical bistability in nonlinear surface-plasmon polaritonic crystals. Physical Review Letters, 2006, 97(5): 057402-1–057402-4
https://doi.org/10.1103/PhysRevLett.97.057402 pmid: 17026140
14 Grieco A, Slutsky B, Tan D T H, Zamek S, Nezhad M P, Fainman Y. Optical bistability in a silicon waveguide distributed Bragg reflector fabry–pérot resonator. Journal of Lightwave Technology, 2012, 30(14): 2352–2355
https://doi.org/10.1109/JLT.2012.2197731
15 Min C, Wang P, Chen C, Deng Y, Lu Y, Ming H, Ning T, Zhou Y, Yang G. All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials. Optics Letters, 2008, 33(8): 869–871
https://doi.org/10.1364/OL.33.000869 pmid: 18414560
16 Boyd R W. Nonlinear Optics. California: Academic Press, 1992
17 Vahala K J. Optical microcavities. Nature, 2003, 424(6950): 839–846
https://doi.org/10.1038/nature01939 pmid: 12917698
18 Notomi M, Shinya A, Mitsugi S, Kira G, Kuramochi E, Tanabe T. Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Optics Express, 2005, 13(7): 2678–2687
https://doi.org/10.1364/OPEX.13.002678 pmid: 19495159
[1] Chuyu ZHONG, Junying LI, Hongtao LIN. Graphene-based all-optical modulators[J]. Front. Optoelectron., 2020, 13(2): 114-128.
[2] Yuhe ZHAO, Xu WANG, Dingshan GAO, Jianji DONG, Xinliang ZHANG. On-chip programmable pulse processor employing cascaded MZI-MRR structure[J]. Front. Optoelectron., 2019, 12(2): 148-156.
[3] Nuo-Hua XIE, Ying CHEN, Huan YE, Chong LI, Ming-Qiang ZHU. Progress on photochromic diarylethenes with aggregation induced emission[J]. Front. Optoelectron., 2018, 11(4): 317-332.
[4] Zongxin ZHANG,Xiaoming LU,Yuxin LENG. Multi-operation laser oscillator: an example of multi-operation laser[J]. Front. Optoelectron., 2017, 10(1): 14-17.
[5] Ting YANG,Shasha LIAO,Li LIU,Jianji DONG. Large-range tunable fractional-order differentiator based on cascaded microring resonators[J]. Front. Optoelectron., 2016, 9(3): 399-405.
[6] Yi YU,Evarist PALUSHANI,Mikkel HEUCK,Leif Katsuo OXENLØWE,Kresten YVIND,Jesper MØRK. Switching dynamics in InP photonic-crystal nanocavity[J]. Front. Optoelectron., 2016, 9(3): 395-398.
[7] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[8] Yunhong DING,Haiyan OU,Jing XU,Meng XIONG,Yi AN,Hao HU,Michael GALILI,Abel Lorences RIESGO,Jorge SEOANE,Kresten YVIND,Leif Katsuo OXENLØWE,Xinliang ZHANG,Dexiu HUANG,Christophe PEUCHERET. Linear all-optical signal processing using silicon micro-ring resonators[J]. Front. Optoelectron., 2016, 9(3): 362-376.
[9] Wen-Liang GONG, Zhe HU?§?, Chong LI, Guo-Feng ZHANG, Tao CHEN, Matthew. P. ALDRED, Zhen-Li HUANG, Ming-Qiang ZHU. Condensed state fluorescence switching of hexaarylbiimidazole-tetraphenylethene conjugate for super-resolution fluorescence nanolocalization[J]. Front Optoelec, 2013, 6(4): 458-467.
[10] Claudio PORZI, Giovanni SERAFINO, Sergio PINNA, An NGUYEN, Giampiero CONTESTABILE, Antonella BOGONI. Review on SOA-MZI-based photonic add/drop and switching operations[J]. Front Optoelec, 2013, 6(1): 67-77.
[11] Chaotan SIMA, James C. GATES, Michalis N. ZERVAS, Peter G. R. SMITH. Review of photonic Hilbert transformers[J]. Front Optoelec, 2013, 6(1): 78-88.
[12] Xuelin YANG, Cen WU, Weisheng HU. High-speed optical binary data pattern recognition for network security applications[J]. Front Optoelec, 2012, 5(3): 271-278.
[13] Zheng ZHANG, Yu YU, Xinliang ZHANG. Simulation for all-optical format conversion from NRZ-DPSK to RZ-DPSK[J]. Front Optoelec Chin, 2011, 4(3): 320-324.
[14] Xiaofan ZHAO, Caiyun LOU, Yanming FENG. Optical signal processing based on semiconductor optical amplifier and tunable delay interferometer[J]. Front Optoelec Chin, 2011, 4(3): 308-314.
[15] Yong LIU, Ligong CHEN, Tianxiang XU, Jinglei MAO, Shangjian ZHANG, Yongzhi LIU. All-optical signal processing based on semiconductor optical amplifiers[J]. Front Optoelec Chin, 2011, 4(3): 231-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed