Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2011, Vol. 4 Issue (3) : 231-242    https://doi.org/10.1007/s12200-011-0141-1
REVIEW ARTICLE
All-optical signal processing based on semiconductor optical amplifiers
Yong LIU(), Ligong CHEN, Tianxiang XU, Jinglei MAO, Shangjian ZHANG, Yongzhi LIU
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China
 Download: PDF(368 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we review the recent progress in the optical signal processing based on the nonlinearity of semiconductor optical amplifiers (SOAs). The four important optical signal processing functional blocks in optical switching are presented, i.e., optical wavelength conversion, optical regeneration, optical logic, and optical format conversion. We present a brief overview of optical wavelength conversion, and focus on various schemes to suppress the slow gain recovery of the SOA and improve the operating speed of the SOA-based optical switches. Optical regeneration including re-amplification, re-shaping and re-timing is also presented. Optical clock recovery that is essential for optical regeneration is reviewed. We also report the recent advances in optical logic and optical format conversion, respectively. After reviewing the four important optical signal processing functional blocks, the review concludes with the future research directions and photonic integration.

Keywords optical switching      optical signal processing      semiconductor optical amplifier      photonic integration     
Corresponding Author(s): LIU Yong,Email:yongliu@uestc.edu.cn   
Issue Date: 05 September 2011
 Cite this article:   
Jinglei MAO,Shangjian ZHANG,Tianxiang XU, et al. All-optical signal processing based on semiconductor optical amplifiers[J]. Front Optoelec Chin, 2011, 4(3): 231-242.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0141-1
https://academic.hep.com.cn/foe/EN/Y2011/V4/I3/231
Fig.1  Scenario of optical signal processing in optical networks
Fig.2  (a) Detuned-optical filtering setup for speeding up SOA gain recovery; (b) input 10 Gbit/s pump pulses; (c) SOA gain recovery; (d) measured wavelength converter recovery with assistance of blue-detuned optical filter
Fig.3  Configuration of turbo switch
Fig.4  Schematic view of QD-SOA. (a) Common QD-SOA; (b) two-electrode QD-SOA
Fig.5  Structure of all-optical 3R regenerator
Fig.6  Scheme of clock recovery based on MLFL
Fig.7  Setup of 3R regenerator based on AFL and SOA-DI configuration
Fig.8  Basic NOT logic gate based on XGM
Fig.9  Setup of multi-function logic gate
1 Alferness R C. Optical communications — a view into the future. In: Proceedings of the 34th European Conference on Optical Communication (ECOC) . 2008, 1
2 O’Mahony M J, Politi C, Klonidis D, Nejabati R, Simeonidou D. Future optical networks. IEEE Journal of Lightwave Technology , 2006, 24(12): 4684-4686
3 Desurvire E B. Capacity demand and technology challenges for lightwave systems in the next two decades. IEEE Journal of Lightwave Technology , 2006, 24(12): 4697-4710
4 Sano A, Masuda H, Kobayashi T, Fujiwara M, Horikoshi K, Yoshida E, Miyamoto Y, Matsui M, Mizoguchi M, Yamazaki H, Sakamaki Y, Ishii H. 69.1-Tb/s (432×171-Gb/s) C- and extended L-band transmission over 240 km using PDM-16-QAM modulation and digital coherent detection. In: Proceedings of Optical Fiber Communication Conference (OFC/NFOEC) 2010 . 2010, 1-3
5 Dorren H J S, Hill M T, Liu Y, Calabretta N, Srivatsa A, Huijskens FM, de Waardt H, Khoe G D. Optical packet switching and buffering by using all-optical signal processing methods. Journal of Lightwave Technology , 2003, 21(1): 2-12
6 Yoo S J B. Optical packet and burst switching technologies for the future photonic internet. IEEE Journal of Lightwave Technology , 2006, 24(12): 4468-4492
7 Blumenthal D J, Bowers J E, Rau L, Chou H F, Rangarajan S, Wang W, Poulsen K N. Optical signal processing for optical packet switching networks. IEEE Communications Magazine , 2003, 41(2): S23-S29
8 Ben Yoo S J. Power consumption in optical packet switches. In: Proceedings of the 34th European Conference on Optical Communication (ECOC) . 2008
9 Nicholes S C, Ma?anovi? M L, Jevremovi? B, Lively E, Coldren L A, Blumenthal D J. The world’s first InP 8×8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port. In: Proceedings of Optical Fiber Communication Conference (OFC) 2009 . 2009, PDPB1
10 Zirngibl M. IRIS: optical switching technologies for scalable data networks. In: Proceedings of Optical Fiber Communication Conference (OFC) 2006 . 2006, 2
11 Blumenthal D J, Masanovic M. LASOR (label switched optical router): architecture and underlying integration technologies. In: Proceedings of European Conference on Optical Communication (ECOC) . 2005, 49
12 Ramos F, Kehayas E, Martinez J M, Clavero R, Marti J, Stampoulidis L, Tsiokos D, Avramopoulos H, Zhang J, Holm-Nielsen P V, Chi N, Jeppesen P, Yan N, Monroy I T, Koonen A M J, Hill M T, Liu Y, Dorren H J S, Caenegem R V, Colle D, Pickavet M, Rip ti B. IST-LASAGNE: towards all-optical label swapping employing optical logic gates and optical flip-flops. Journal of Lightwave Technology , 2005, 23(10): 2993-3011
13 Stamatiadis C, Petrantonakis D, Bakopoulos P, Kehayas E, Zakynthinos P, Kouloumentas Ch, Stampoulidis L, Dekker R, Klein E J, Avramopoulos H. First demonstration of WDM-enabled all-optical wavelength conversion with a SOA and a 2nd order microring resonator ROADM. In: Proceedings of Optical Fiber Communication Conference (OFC) . 2009, PDPA8
14 Cotter D, Manning R J, Blow K J, Ellis A D, Kelly A E, Nesset D, Phillips I D, Poustie A J, Rogers D C. Nonlinear optics for high-speed digital information processing. Science , 1999, 286(5444): 1523-1528
15 Stubkjaer K E. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing. IEEE Journal on Selected Topics in Quantum Electronics , 2000, 6(6): 1428-1435
16 Dorren H J S, Lenstra D, Liu Y, Hill M T, Khoe G D. Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories. IEEE Journal of Quantum Electronics , 2003, 39(1): 141-148
17 Nuzman C, Leuthold J, Ryf R, Chandrasekhar S, Giles C, Neilson D. Design and implementation of wavelength-flexible network nodes. Journal of Lightwave Technology , 2003, 21(3): 648-663
doi: 10.1109/JLT.2003.809687
18 Gripp J, Duelk M, Simsarian J E, Bhardwaj A, Bernasconi P, Laznicka O, Zirngibl M. Optical switch fabrics for ultra-high capacity IP-routers. Journal of Lightwave Technology , 2003, 21(11): 2839-2850
doi: 10.1109/JLT.2003.819150
19 Kang I, Dorrer C, Zhang L M, Dinu M, Rasras M, Buhl L L, Cabot S, Bhardwaj A, Liu X, Cappuzz M A, Gomez L, Wong-Foy A, Chen Y F, Dutta N K, Patel S S, Neilson D T, Giles C R, Piccirilli A, Jaques J. Characterization of the dynamical processes in all-optical signal processing using semiconductor optical amplifiers. IEEE Journal of Selected Topics Quantum Electronics , 2008, 14(3): 758-769
doi: 10.1109/JSTQE.2008.917020
20 M?rk J, Mecozzi A. Response function for gain and refractive index dynamics in active semiconductor waveguides. Applied Physics Letters , 1994, 65(14): 1736-1738
doi: 10.1063/1.112900
21 Nielsen M L, M?rk J, Suzuki R, Sakaguchi J, Ueno Y. Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches. Optics Express , 2006, 14(1): 331-347
doi: 10.1364/OPEX.14.000331 pmid:19503347
22 Huang X, Qin C, Huang D X, Zhang X L. Local carrier recovery acceleration in quantum well semiconductor optical amplifiers. IEEE Journal of Quantum Electronics , 2010, 46(10): 1407-1413
doi: 10.1109/JQE.2010.2047713
23 Spyropoulou M, Pleros N, Vyrsokinos K, Apostolopoulos D, Bougioukos M, Petrantonakis D, Miliou A, Avramopoulos H. 40 Gb/s NRZ wavelength conversion using a differentially-biased SOA-MZI: theory and experiment. Journal of Lightwave Technology , 2011, 29(10): 1489-1499
doi: 10.1109/JLT.2011.2134832
24 Leuthold J, Moller L, Jaques J, Cabot S, Zhang L, Bernasconi P, Cappuzzo M, Gomez L, Laskowski E, Chen E, Wong-Foy A, Griffin A. 160 Gb/s SOA all-optical wavelength converter and assessment of its regenerative properties. Electronics Letters , 2004, 40(9): 554-555
doi: 10.1049/el:20040326
25 Kang I, Dorrer C, Zhang L, Rasras M, Buhl L, Bhardwaj A, Cabot S, Dinu M, Liu X, Cappuzzo M, Gomez L, Wong-Foy A, Chen Y F, Patel S, Neilson D T, Jacques J, Giles C R. Regenerative all optical wavelength conversion of 40-Gb/s DPSK signals using a semiconductor optical amplifier Mach-Zehnder interferometer. In: Proceedings of European Conference on Optical Communication (ECOC) 2005 . 2005, 6: 29-30
doi: 10.1049/cp:20050861
26 Wang J, Maitra A, Freude W, Leuthold J. Regenerative properties of interferometric all-optical DPSK wavelength converters. Optics Express , 2009, 17(25): 22639-22658
doi: 10.1364/OE.17.022639 pmid:20052190
27 Liu Y, Tangdiongga E, Li Z, de Waardt H, Koonen A M J, Khoe G D, Shu X W, Bennion I, Dorren H J S. Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier. IEEE Journal of Lightwave Technology , 2007, 25(1): 103-108
doi: 10.1109/JLT.2006.888484
28 Liu Y, Tangdiongga E, Li Z, Zhang S X, de Waardt H, Khoe G D, Dorren H J S. Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter. IEEE Journal of Lightwave Technology , 2006, 24 (1): 230-236
doi: 10.1109/JLT.2005.861136
29 Leuthold J, Marom M D, Cabot S, Jaques J J, Ryf R, Giles C R. All-optical wavelength conversion using a pulse reformatting optical filter. Journal of Lightwave Technology , 2004, 22(1): 186-192
doi: 10.1109/JLT.2003.822158
30 Ueno Y, Nakamura S, Tajima K. Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40-160-GHz range for use in ultrahigh-speed all-optical signal processing. Journal of the Optics Society of America B: Optics Physics , 2002, 19(11): 2573-2589
doi: 10.1364/JOSAB.19.002573
31 Nielsen M L, M?rk J. Increasing the modulation bandwidth of semiconductor-optical-amplifier-based switches by using optical filtering. Journal of the Optics Society of America B: Optics Physics , 2004, 21(9): 1606-1619
doi: 10.1364/JOSAB.21.001606
32 Dong J J, Fu S N, Zhang X L, Shum P, Zhang L R, Huang D X. Analytical solution for SOA-based all-optical wavelength conversion using transient cross-phase modulation. IEEE Photonics Technology Letters , 2006, 18(24): 2554-2556
doi: 10.1109/LPT.2006.886864
33 Agis F G, Raz O, Zhang S, Tangdiongga E, Zimmermann L, Voigt K, Vyrsokinos C, Stampoulidis L, Dorren H J S. All-optical wavelength conversion at 160 Gbit/s using SOA and silicon-on-insulator photonic circuit. Electronics Letters , 2009, 45(22): 1132-1133
34 Manning R J, Yang X, Webb R P, Giller R, Cotter D. Cancellation of non-linear patterning in semiconductor amplifier based switches. In: Proceedings of Optical Amplifiers and Their Applications . 2006, OTuC1
35 Yang X L, Manning R J, Webb R P, Giller R, Gunning F, Cotter D. High-speed all-optical signal processing using semiconductor optical amplifiers. In: Proceedings of the 8th International Conference on Transparent Optical Networks (ICTON) . 2006, 161-164
doi: 10.1109/ICTON.2006.248363
36 Dupertuis M A, Pleumeekers J L, Hessler T P, Selbmann P E, Deveaud B, Dagens B, Emery J Y. Extremely fast high-gain and low-current SOA by optical speed-up at transparency. IEEE Photonics Technology Letters , 2000, 12(11): 1453-1455
doi: 10.1109/68.887655
37 Pleumeekers J L, Kauer M, Dreyer K, Burrus C, Dentai A G, Shunk S, Leuthold J, Joyner C H. Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength. IEEE Photonics Technology Letters , 2002, 14(1): 12-14
doi: 10.1109/68.974145
38 Matsumoto A, Nishimura K, Utaka K, Usami M. Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation. IEEE Journal of Quantum Electronics , 2006, 42(3): 313-323
doi: 10.1109/JQE.2006.869809
39 Wu Z, Huang Y, Wang Y, Wan J, Ye R. Novel scheme to increase the operation speed of a SOA for all-optical wavelength conversion. Proceedings of SPIE , 2007, 6782: 67822A
40 Bramann G, Wünsche H J, Busolt U, Schmidt C, Schlak M, Sartorius B, Nolting H P. Two-wave competition in ultralong semiconductor optical amplifiers. IEEE Journal of Quantum Electronics , 2005, 41(10): 1260-1267
doi: 10.1109/JQE.2005.854600
41 Runge P, Bunge C A, Petermann K. All-optical wavelength conversion with extinction ratio improvement of 100 Gb/s RZ-signals in ultralong bulk semiconductor optical amplifiers. IEEE Journal of Quantum Electronics , 2010, 46(6): 937-944
doi: 10.1109/JQE.2010.2041430
42 Jungho K L, Laemmlin M, Meuer C, Bimberg D, Eisenstein G. Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers. IEEE Journal of Quantum Electronics , 2009, 45(3): 240-248
43 Yu Y, Huang L R, Xiong M, Tian P, Huang D X. Enhancement of gain recovery rate and cross-gain modulation bandwidth using a two-electrode quantum-dot semiconductor optical amplifier. Journal of the Optical Society of America B: Optical Physics , 2010, 27(11): 2211-2217
doi: 10.1364/JOSAB.27.002211
44 Meuer C, Schmidt-Langhorst C, Bonk R, Schmeckebier H, Arsenijevi D, Fiol G, Galperin A, Leuthold J, Schubert C, Bimberg D. 80 Gb/s wavelength conversion using a quantum-dot semiconductor optical amplifier and optical filtering. Optics Express , 2011, 19(6): 5134-5142
doi: 10.1364/OE.19.005134 pmid:21445148
45 Contestabile G, Maruta A, Sekiguchi S, Morito K, Sugawara M, Kitayama K. 80 Gb/s multicast wavelength conversion by XGM in a QD-SOA. In: Proceedings of the 36th European Conference on Optical Communication (ECOC) . 2010, 1-3
doi: 10.1109/ECOC.2010.5621527
46 Leclerc O, Lavigne B, Balmefrezol E, Brindel P, Pierre L, Rouvillain D, Seguineau F. Optical regeneration at 40 Gb/s and beyond. Journal of Lightwave Technology , 2003, 21(11): 2779-2790
doi: 10.1109/JLT.2003.819148
47 Phillips I D, Ellis A D, Thiele J, Manning R J, Kelly A E. 40 Gbit/s all-optical data regeneration and demultiplexing with long pattern lengths using a semiconductor nonlinear interferometer. Electronics Letters , 1998, 34(24): 2340-2342
doi: 10.1049/el:19981630
48 Vivero T, Calabretta N, Monroy I T, Kassar G C, ?hman F, Yvind K, González-Marcos A, M?rk J. 10 Gb/s-NRZ Optical 2R-regeneration in two-section SOA-EA chip. In: Proceedings of the 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society . 2007, 806-807
doi: 10.1109/LEOS.2007.4382653
49 Pan S L, Huo L, Yang Y F, Lou C Y, Gao Y Z. First and second order PMD mitigation using 3R regeneration. Proceedings of SPIE , 2005, 6021: 602108
doi: 10.1117/12.633155
50 Fernandez A, Chao L, Chi J W D. All-optical clock recovery and pulse reshaping using semiconductor optical amplifier and dispersion compensating fiber in a ring cavity. IEEE Photonics Technology Letters , 2008, 20(13): 1148-1150
doi: 10.1109/LPT.2008.925186
51 Tang X F, Cartledge J C, Shen A, Dijk F V, Akrout A, Duan G H. Characterization of all-optical clock recovery for 40 Gb/s RZ-OOK and RZ-DPSK data using mode-lock semiconductor laser. Journal of Lightwave Technology , 2009, 27(20): 4603-4609
doi: 10.1109/JLT.2009.2025247
52 Arahira S, Takahashi H, Nakamura K, Yaegashi H, Ogawa Y. Polarization-, wavelength-, and filter-free all-optical clock recovery in a passively mode-lock laser diode with orthogonally pumped polarization-diversity configuration. IEEE Journal of Quantum Electronics , 2009, 45(5): 476-487
doi: 10.1109/JQE.2009.2013096
53 Arahira S. Variable-in, variable-out optical clock recovery with an optically injection-locked and regeneratively actively mode-locked laser diode. IEEE Journal of Quantum Electronics , 2011, 47(5): 614-621
doi: 10.1109/JQE.2011.2107887
54 Cetina J P, Latkowshi S, Maldonado-Basilio R, Landais P. Wavelength tunability of all-optical clock-recovery based on quantum-dash mode-locked laser diode under injection of a 40-Gbs NRZ data stream. IEEE Photonics Technology Letters , 2011, 23(9): 531-533
doi: 10.1109/LPT.2011.2111366
55 Chen L R, Cartledge J C. Mode-locking in a semiconductor fiber laser using cross-absorption modulation in an electroabsorption modulator and application to all-optical clock recovery. Journal of Lightwave Technology , 2008, 26(7): 799-806
doi: 10.1109/JLT.2007.915208
56 Silva M C, Lagrost A, Bramerie L, Gay M, Besnard P, Joindot M, Simon J C, Shen A, Duan G H. Up to 427 GHz all optical frequency down-conversion clock recovery based on quantum-dash Fabry-Perot mode-locked laser. Journal of Lightwave Technology , 2011, 29(4): 609-615
doi: 10.1109/JLT.2011.2108262
57 Ohno T, Sato K, Iga R, Kondo Y, Ito T, Furuta T, Yoshino K, Ito H. Recovery of 160 GHz optical clock from 160 Gbit/s data stream using modelocked laser diode. Electronics Letters , 2004, 40(4): 265-266
doi: 10.1049/el:20040180
58 Tang X F, Cartledge J C, Shen A, Dijk F V, Duan G H. All-optical clock recovery for 40-Gbs MZM-generated NRZ-DPSK signals using a self-pulsating DBR laser. IEEE Photonics Technology Letters , 2008, 20(17): 1443-1445
doi: 10.1109/LPT.2008.927888
59 Monfils L, Cartedge J C. Detailed theoretical and experimental characterization of 10 Gb/s clock recovery using a Q-switched self-pulsating laser. Journal of Lightwave Technology , 2009, 27(5): 619-626
doi: 10.1109/JLT.2008.923223
60 Sun Y, Pan J Q, Zhao L J, Chen W X, Wang W, Wang L, Zhao X F, Lou C Y. All-optical clock recovery for 20 Gb/s using an amplified feedback DFB laser. IEEE Journal of Lightwave Technology , 2010, 28(17): 2521-2524
doi: 10.1109/JLT.2010.2055539
61 Wang L, Zhao X, Lou C, Lu D, Sun Y, Zhao L, Wang W. 40 Gbits/s all-optical clock recovery for degraded signals using an amplified feedback laser. Applied Optics , 2010, 49(34): 6577-6581
doi: 10.1364/AO.49.006577 pmid:21124533
62 Tang X F, Cartledge J C, Shen A, Dijk F V, Duan G H. 40-Gbs polarization-insensitive all-optical clock recovery using a quantum-dot Fabry-Perot laser assisted by an SOA and bandpass filtering. IEEE Photonics Technology Letters , 2008, 20(24): 2051-2053
doi: 10.1109/LPT.2008.2006191
63 Wang F, Zhang X L, Xu E M, Zhang Y. A novel all-optical clock recovery scheme. In: Proceedings of Communications and Photonics Conference and Exhibition (ACP) 2009 . 2009, 1-6
64 Cartledge J C, Tang X F, Yan?ez M, Shen A, Akrout A, Duan G H. All-optical clock recovery using a quantum-dash Fabry-Perot laser. In: Proceedings of IEEE Topic Meeting on Microwave Photonics (MWP) . 2010, 201-204
65 Spyropoulou M, Pleros N, Papadimitriou G, Tomkos I, Pomportsis A. Multi-wavelength clock recovery based on a Fabry-Perot filter and a quantum-dot semiconductor optical amplifier. In: Proceedings of the 10th Anniversary International Conference on Transparent Optical Networks . 2008, 128-131
66 Wang F, Yu Y, Huang X, Zhang X L. Single and multiwavelength all-optical clock recovery using Fabry-Pérot semiconductor optical amplifier. IEEE Photonics Technology Letters , 2009, 21(16): 1109-1111
doi: 10.1109/LPT.2009.2023223
67 Parra-Cetina J, Latkowski S, Maldonado-Basilio R, Landais P. Timing jitter and all-optical clock recovery based on a quantum-dash Fabry-Pérot semiconductor laser. In: Proceedings of the 12th Anniversary International Conference on Transparent Optical Networks . 2010, 1-4
doi: 10.1109/ICTON.2010.5549100
68 Poustie A. SOA-based all-optical processing. In: Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference . 2007, OWF1
69 Wolfson D, Hansen P B, Kioch A, Stubkjaer K E. All-optical 2R regeneration based on interferometric structure incorporating semiconductor optical amplifiers. Electronics Letters , 1999, 35(1): 59-60
doi: 10.1049/el:19990030
70 Gavioli G, Thomsen B C, Mikhailov V, Bayvel P. Cascadability properties of optical 3R regenerators based on SOAs. Journal of Lightwave Technology , 2007, 25(9): 2766-2775
doi: 10.1109/JLT.2007.902116
71 Duan P X, Chen L G, Zhang S J, Zhou X L, Liu Y Z, Liu Y. All-optical 2R regeneration based on self-induced polarization rotation in a single semiconductor optical amplifier. Chinese Science Bulletin , 2009, 54(20): 3704-3708
doi: 10.1007/s11434-009-0513-8
72 Zhu Z, Funabashi M, Pan Z, Paraschis L, Yoo S J. 1000 cascaded stages of optical 3R regeneration with SOA-MZI-based clock enhancement to achieve 10-Gb/s 125000-km dispersion uncompensated transmission. IEEE Photonics Technology Letters , 2006, 18(20): 2159-2161
doi: 10.1109/LPT.2006.883185
73 Zhao X F, Wang L, Lu D, Lou C Y, Sun Y, Zhao L J, Wang W. 40-Gb/s all-optical 3R regeneration with semiconductor devices. In: Proceedings of the 19th Annual Wireless and Optical Communications Conference (WOCC) . 2010, 1-3
doi: 10.1109/WOCC.2010.5510639
74 Contestabile G, Proietti R, Presi M, Ciaramella E. 40Gb/s wavelength preserving 2R regeneration for both RZ and NRZ signals. In: Proceedings of Optical Fiber Communication Conference . 2008, OWK1
75 Errico A D, Contestabile G, Proietti R, Presi M, Ciaramella E, Bramerie L, Gay M, Lobo S, Joindot M, Simon J C, Massoubre D, Nguyen H T, Oudar J L. 2R optical regeneration combining XGC in a SOA and a saturable absorber. In: Proceedings of Optical Fiber Communication Conference . 2008, OWK4
76 Contestabile G. All-optical signal regeneration using SOAs. In: Proceedings of Asia Communications and Photonics Conference and Exhibition . 2010, 7-8
doi: 10.1109/ACP.2010.5682860
77 Chan L Y, Qureshi K K, Wai P K A, Moses B, Lui L F K, Tam H Y, Demokan M S. All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate. IEEE Photonics Technology Letters , 2003, 15(4): 593-595
doi: 10.1109/LPT.2003.809298
78 Martinez J M, Ramos F, Marti J. All-optical packet header processor based on cascaded SOA-MZIs. Electronics letters , 2004, 40(14): 894-895
doi: 10.1049/el:20045209
79 Fjelde T, Kloch A, Wolfson D, Dagens B, Coquelin A, Guillemot I, Gaborit F, Poingt F, Renaud M. Novel scheme for simple label-swapping employing XOR logic in an integrated interferometer wavelength converter. IEEE Photonics Technology Letters , 2001, 13(7): 750-752
doi: 10.1109/68.930436
80 Bintjas C, Pleros N, Yiannopoulos K, Theophilopoulos G, Kalyvas M, Avramopoulos H, Guekos G. All-optical packet address and payload separation. IEEE photonic technology letters , 2002, 14(12): 1728-1730
doi: 10.1109/LPT.2002.804654
81 Martinez J M, Liu Y, Clavero R, Koonen A M J, Herrera J, Ramos F, Dorren H J S, Marti J. All-optical processing based on a logic XOR gate and a flip-flop memory for packet-switched networks. IEEE Photonics Technology Letters , 2007, 19(17): 1316-1318
doi: 10.1109/LPT.2007.902378
82 Kim J H, Jhon Y M, Byun Y T, Lee S, Woo D H, Kim S H. All-optical XOR gate using semiconductor optical amplifiers without additional input beam. IEEE Photonics Technology Letters , 2002, 14(10): 1436-1438
doi: 10.1109/LPT.2002.801841
83 Kim S H, Kim J H, Yu B G, Byun Y T, Jeon Y M, Lee S, Woo D H. All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers. Electronics Letters , 2005, 41(18): 1027-1028
doi: 10.1049/el:20052320
84 Reis C, Dionísio R P, Neto B, Teixeira A, André P. All-optical XOR based on integrated MZI-SOA with Co and counter-propagation scheme. In: Proceedings of ICTON Mediterranean Winter Conference . 2009, 1-4
doi: 10.1109/ICTONMW.2009.5385613
85 Yang X L, Weng Q W, Hu W S. High-speed all-optical XOR gates using semiconductor optical amplifiers in ultrafast nonlinear interferometers. Frontiers of Optoelectronics in China , 2010, 3(3): 245-252
doi: 10.1007/s12200-010-0105-x
86 Li Z, Liu Y, Zhang S, Ju H, de Waardt H, Khoe G D, Dorren H J S, Lenstra D. All-optical logic gates using semiconductor optical amplifier assisted by optical filter. Electronics Letters , 2005, 41(25): 1397-1399
doi: 10.1049/el:20053385
87 Han L Y, Zhang H Y, Jiang H, Wen H, Guo Y L. All-optical NOR and OR logic gates based on cross-polarization modulation in a semiconductor optical amplifier. Optics Engineering , 2008, 47(1): 015001
88 Li Z H, Li G F. Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier. IEEE Photonics Technology Letters , 2006, 18(12): 1341-1343
doi: 10.1109/LPT.2006.877008
89 Li P L, Huang D X, Zhang X L. SOA-based ultrafast multifunctional all-optical logic gates with PolSK modulated signals. IEEE Journal of Quantum Electronics , 2009, 45(12): 1542-1550
doi: 10.1109/JQE.2009.2025144
90 Zhang X L, Xu J, Dong J J, Huang D X. All-optical logic gates based on semiconductor optical amplifiers and tunable filters. Lecture Notes in Computer Science , 2009, 5882: 19-29
doi: 10.1007/978-3-642-10442-8_4
91 Dong J, Zhang X, Wang F, Yu Y, Huang D. Single-to-dual channel NRZ-to-RZ format conversion by four-wave mixing in single semiconductor optical amplifier. Electronics Letters , 2008, 44(12): 763-764
doi: 10.1049/el:20080727
92 Tan H N, Matsuura M, Kishi N. Wavelength-shift-free multi-channel width-tunable NRZ-to-RZ modulation format conversion using a single SOA-based Sagnac interferometer. In: Proceedings of the Optoelectronics and Communications Conference . 2010, 208—209
93 Astar W, Carter G M. 10 Gbit/s RZ-OOK to RZ-BPSK format conversion using SOA and synchronous pulse carver. Electronics Letters , 2008, 44(5): 369-370
doi: 10.1049/el:20080289
94 Li P L, Huang D X, Zhang X L, Chen H M. Ultrahigh-speed multifunctional all-optical logic gates based on FWM in SOAs with PolSK modulated signals. In: Proceedings of Optical Fiber Communication Conference . 2008, 1-3
95 Nissanka S M, Maruta A, Mitani S, Shimizu K, Miyahara T, Aoyagi T, Hatta T, Sugitatsu A, Kitayama K I. All-optical modulation format conversion from NRZ-OOK to RZ-QPSK using integrated SOA three-arm-MZI wavelength converter. In: Proceedings of Optical Fiber Communication Conference . 2009, 1-3
96 Wu B B, Fu S N, Wu J, Shum P, Ngo N Q, Xu K, Hong X B, Lin J T. 40 Gb/s multifunction optical format conversion module with wavelength multicast capability using nondegenerate four-wave mixing in a semiconductor optical amplifier. Journal of Lightwave Technology , 2009, 27(20): 4446-4454
doi: 10.1109/JLT.2009.2024171
97 Smit M K, Bente E A J M, Hill M T, Karouta F, Leijtens X J M, Oei Y S, van der Tol J J G M, Notzel R, Koenraad P M, Dorren H S, de Waardt H, Koonen A M J, Khoe G D. Current status and prospects of photonic IC technology. In: Proceedings of IEEE Conference on Indium Phosphide and Related Materials . 2007, 3-6
doi: 10.1109/ICIPRM.2007.380674
98 Liu Y, Nan Y, Wang B J, Zhou D B, An X, Bian J, Pan J Q, Zhao L J, Wang W. Monolithic integration of widely tunable sampled grating DBR laser with tilted semiconductor optical amplifier. Journal of Semiconductors , 2010, 31(7): 074003
doi: 10.1088/1674-4926/31/7/074003
99 Liu H B, Zhao L J, Pan J Q, Zhu H L, Zhou F, Wang B J, Wang W. Monolithic integration of sampled grating DBR with electroabsorption modulator by combining selective-area-growth MOCVD and quantum-well intermixing. Chinese Physics Letters , 2008, 25(10): 3670-3672
doi: 10.1088/0256-307X/25/10/041
100 Kang I, Rasras M, Buhl L, Dinu M, Cabot S, Cappuzzo M, Gomez L T, Chen Y F, Patel S S, Dutta N, Piccirilli A, Jaques J, Giles C R. Generation of 173-Gb/s single-polarization QPSK signals by all-optical format conversion using a photonic integrated device. In: Proceedings of the 35th European Conference on Optical Communication (ECOC) . 2009, 1-2
101 Poustie A. Hybrid integration for advanced photonic devices. In: Proceedings of European Conference on Integrated Optics (ECIO) . 2008, WeB1
[1] Saket KAUSHAL, Rui Cheng, Minglei Ma, Ajay Mistry, Maurizio Burla, Lukas Chrostowski, José Azaña. Optical signal processing based on silicon photonics waveguide Bragg gratings: review[J]. Front. Optoelectron., 2018, 11(2): 163-188.
[2] Zhefeng HU, Jianhui XU, Min HOU. Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay[J]. Front. Optoelectron., 2017, 10(2): 180-188.
[3] Ting YANG,Shasha LIAO,Li LIU,Jianji DONG. Large-range tunable fractional-order differentiator based on cascaded microring resonators[J]. Front. Optoelectron., 2016, 9(3): 399-405.
[4] Yi YU,Evarist PALUSHANI,Mikkel HEUCK,Leif Katsuo OXENLØWE,Kresten YVIND,Jesper MØRK. Switching dynamics in InP photonic-crystal nanocavity[J]. Front. Optoelectron., 2016, 9(3): 395-398.
[5] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[6] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[7] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[8] Xinliang ZHANG,Zhao WU. Linear optical signal processing with optical filters: a tutorial[J]. Front. Optoelectron., 2016, 9(3): 377-389.
[9] Yunhong DING,Haiyan OU,Jing XU,Meng XIONG,Yi AN,Hao HU,Michael GALILI,Abel Lorences RIESGO,Jorge SEOANE,Kresten YVIND,Leif Katsuo OXENLØWE,Xinliang ZHANG,Dexiu HUANG,Christophe PEUCHERET. Linear all-optical signal processing using silicon micro-ring resonators[J]. Front. Optoelectron., 2016, 9(3): 362-376.
[10] Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
[11] Claudio PORZI, Giovanni SERAFINO, Sergio PINNA, An NGUYEN, Giampiero CONTESTABILE, Antonella BOGONI. Review on SOA-MZI-based photonic add/drop and switching operations[J]. Front Optoelec, 2013, 6(1): 67-77.
[12] Chaotan SIMA, James C. GATES, Michalis N. ZERVAS, Peter G. R. SMITH. Review of photonic Hilbert transformers[J]. Front Optoelec, 2013, 6(1): 78-88.
[13] Li HUO, Qiang WANG, Yanfei XING, Caiyun LOU. Signal generation and processing at 100 Gb/s based on optical time division multiplexing[J]. Front Optoelec, 2013, 6(1): 57-66.
[14] Ehsan MOHADESRAD, Kambiz ABEDI. Proposal for modeling of tapered quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 457-464.
[15] Hussein TALEB, Kambiz ABEDI. Homogeneous and inhomogeneous broadening effects on static and dynamic responses of quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 445-456.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed