Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2018, Vol. 11 Issue (2) : 134-147    https://doi.org/10.1007/s12200-018-0814-0
REVIEW ARTICLE
On-chip frequency combs and telecommunications signal processing meet quantum optics
Christian REIMER1, Yanbing ZHANG1, Piotr ROZTOCKI1, Stefania SCIARA1,2, Luis Romero CORTÉS1, Mehedi ISLAM1, Bennet FISCHER1, Benjamin WETZEL3, Alfonso Carmelo CINO2, Sai Tak CHU4, Brent LITTLE5, David MOSS6, Lucia CASPANI7, José AZAÑA1, Michael KUES1,8, Roberto MORANDOTTI1,9,10()
1. Institut National de la Recherche Scientifique – Centre E?nergie, Mate?riaux et Te?le?communications (INRS-EMT), 1650 Boulevard Lionel-Boulet, Varennes, Que?bec, J3X 1S2, Canada
2. Department of Energy, Information Engineering and Mathematical Models, University of Palermo, Palermo, Italy
3. Department of Physics & Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, UK
4. Department of Physics and Material Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
5. State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
6. Centre for Micro Photonics, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
7. Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow G1 1RD, UK
8. School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK
9. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
10. National Research University of Information Technologies, Mechanics and Optics, St Petersburg 197101, Russia
 Download: PDF(823 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Entangled optical quantum states are essential towards solving questions in fundamental physics and are at the heart of applications in quantum information science. For advancing the research and development of quantum technologies, practical access to the generation and manipulation of photon states carrying significant quantum resources is required. Recently, integrated photonics has become a leading platform for the compact and cost-efficient generation and processing of optical quantum states. Despite significant advances, most on-chip non-classical light sources are still limited to basic bi-photon systems formed by two-dimensional states (i.e., qubits). An interesting approach bearing large potential is the use of the time or frequency domain to enabled the scalable on-chip generation of complex states. In this manuscript, we review recent efforts in using on-chip optical frequency combs for quantum state generation and telecommunications components for their coherent control. In particular, the generation of bi- and multi-photon entangled qubit states has been demonstrated, based on a discrete time domain approach. Moreover, the on-chip generation of high-dimensional entangled states (quDits) has recently been realized, wherein the photons are created in a coherent superposition of multiple pure frequency modes. The time- and frequency-domain states formed with on-chip frequency comb sources were coherently manipulated via off-the-shelf telecommunications components. Our results suggest that microcavity-based entangled photon states and their coherent control using accessible telecommunication infrastructures can open up new venues for scalable quantum information science.

Keywords nonlinear optics      quantum optics      entangled photons     
Corresponding Author(s): Roberto MORANDOTTI   
Just Accepted Date: 18 May 2018   Online First Date: 27 June 2018    Issue Date: 04 July 2018
 Cite this article:   
Christian REIMER,Yanbing ZHANG,Piotr ROZTOCKI, et al. On-chip frequency combs and telecommunications signal processing meet quantum optics[J]. Front. Optoelectron., 2018, 11(2): 134-147.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-018-0814-0
https://academic.hep.com.cn/foe/EN/Y2018/V11/I2/134
Fig.1  Quantum frequency comb generation in integrated microring resonators. (a) Via spontaneous four-wave mixing inside the nonlinear microcavity [48], two pump photons at frequency ( ωp) are converted to one signal and one idler photon at frequencies ωi and ωs, with energy conservation demanding ωi+ ωs=2ωp. Inset: an integrated Hydex photonic chip (based on a high refractive index glass with similar properties to silicon oxynitride) compared to a Canadian one-dollar coin. (b) A broad measured quantum frequency comb spectrum spanning from the S to the L telecommunications band [22]
Fig.2  Photon coincidence, and auto-correlation measurement. The high coincidence to accidental ratio in the photon coincidence peak (a) shows that the source can be used as a good quantum source. The dip in the heralded auto-correlation peak (b) confirms that the photons can be used as heralded single photons. The single photon auto-correlation peaks for both signal (c) and idler (d) photons are reaching two, confirming that the photons are emitted into pure states
Fig.3  Experimental setup for the generation and characterization of time-bin entangled quantum frequency comb. Double-pulses are generated by means of an unbalanced interferometer, and are then used to excite the microring resonator for photon pair generation, emitting a time-bin entangled frequency comb. Another set of interferometers is then used for state characterization [22]
Fig.4  Two-photon quantum interference (a) and quantum state ((b) ideal and (c) measured) tomography. By changing the phases of the characterization interferometers, two-photon quantum interference and quantum state tomography can be performed. The quantum interference has a visibility exceeding the limit for a Bell inequality violation, and the tomography confirms that a state close to the maximally entangled ideal Bell state is generated [22]
Fig.5  Four-photon quantum state tomography. (a) Ideal; (b) measured. By performing tomography on the four-photon state, the first generation of a multi-photon entangled state on a photonic chip was confirmed [22]
Fig.6  Experimental setup for the generation and characterization of high-dimensional quantum states with on-chip optical frequency combs. The microring resonator is excited with single pulses from a mode-locked laser, generating photon pairs in a superposition of frequency modes. Using a combination of programmable filters and an electro-optic phase modulator, the quantum states can be coherently manipulated and projection measurements can be performed [27]
Fig.7  Experimental realization of coherent manipulation of high-dimensional frequency-bin entangled quantum states. Individual steps to control, manipulate and characterize the high-dimensional quantum states are displayed. (a) The initial states |Y〉 were generated using the micro- ring resonator (MRR)-based operational principle illustrated in Fig. 1. (b) Using a programmable filter (PF1), any arbitrary spectral phase and amplitude mask can be imposed on the quantum states for manipulation. (c) An electro-optic modulator (Mod) driven by a radio-frequency synthesizer was used to coherently mix different frequency components of the high-dimensional states. (d) A second programmable filter (PF2) can impose an amplitude and phase mask and route the signal and idler to two different paths. (e) The photons were then detected using single photon counters and timing electronics [27]
Fig.8  Quantum interference and quantum state tomography of high-dimensional entangled photon states. The visibilities of the quantum interference of quDits with (a) D = 2, (b) D = 3 and (c) D = 4, exceed the visibilities required to violate a Bell inequality for D=2, D=3 and D = 4 states. Full quantum state tomography revealed that the experimentally reconstructed density matrix of the entangled quDit states are in very good agreement with the expected maximally entangled states [27]
1 Lloyd S. Universal quantum simulators. Science, 1996, 273(5278): 1073–1078
https://doi.org/10.1126/science.273.5278.1073 pmid: 8688088
2 Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien J L. Quantum computers. Nature, 2010, 464(7285): 45–53
https://doi.org/10.1038/nature08812 pmid: 20203602
3 O’Brien J L. Optical quantum computing. Science, 2007, 318(5856): 1567–1570
https://doi.org/10.1126/science.1142892 pmid: 18063781
4 Pfeifle J, Brasch V, Lauermann M, Yu Y, Wegner D, Herr T, Hartinger K, Schindler P, Li J, Hillerkuss D, Schmogrow R, Weimann C, Holzwarth R, Freude W, Leuthold J, Kippenberg T J, Koos C. Coherent terabit communications with microresonator Kerr frequency combs. Nature Photonics, 2014, 8(5): 375–380
https://doi.org/10.1038/nphoton.2014.57 pmid: 24860615
5 Kimble H J. The quantum internet. Nature, 2008, 453(7198): 1023–1030
https://doi.org/10.1038/nature07127 pmid: 18563153
6 Wang X L, Chen L K, Li W, Huang H L, Liu C, Chen C, Luo Y H, Su Z E, Wu D, Li Z D, Lu H, Hu Y, Jiang X, Peng C Z, Li L, Liu N L, Chen Y A, Lu C Y, Pan J W. Experimental ten-photon entanglement. Physical Review Letters, 2016, 117(21): 210502
https://doi.org/10.1103/PhysRevLett.117.210502 pmid: 27911530
7 Yao X C, Wang T X, Chen H Z, Gao W B, Fowler A G, Raussendorf R, Chen Z B, Liu N L, Lu C Y, Deng Y J, Chen Y A, Pan J W. Experimental demonstration of topological error correction. Nature, 2012, 482(7386): 489–494
https://doi.org/10.1038/nature10770 pmid: 22358838
8 Lu C Y, Zhou X Q, Gühne O, Gao W B, Zhang J, Yuan Z S, Goebel A, Yang T, Pan J W. Experimental entanglement of six photons in graph states. Nature Physics, 2007, 3(2): 91–95
https://doi.org/10.1038/nphys507
9 Blatt R, Wineland D. Entangled states of trapped atomic ions. Nature, 2008, 453(7198): 1008–1015
https://doi.org/10.1038/nature07125 pmid: 18563151
10 Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow J M, Gambetta J M. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 2017, 549(7671): 242–246
https://doi.org/10.1038/nature23879 pmid: 28905916
11 Kwiat P G. Hyper-entangled states. Journal of Modern Optics, 1997, 44(11–12): 2173–2184
https://doi.org/10.1080/09500349708231877
12 Barreiro J T, Langford N K, Peters N A, Kwiat P G. Generation of hyperentangled photon pairs. Physical Review Letters, 2005, 95(26): 260501
https://doi.org/10.1103/PhysRevLett.95.260501 pmid: 16486324
13 Xie Z, Zhong T, Shrestha S, Xu X A, Liang J, Gong Y X, Bienfang J C, Restelli A, Shapiro J H, Wong F N C, Wei Wong C. Harnessing high-dimensinal hyperentanglement through a biphoton frequency comb. Nature Photonics, 2015, 9(8): 536–542
https://doi.org/10.1038/nphoton.2015.110
14 Udem T, Holzwarth R, Hänsch T W. Optical frequency metrology. Nature, 2002, 416(6877): 233–237
https://doi.org/10.1038/416233a pmid: 11894107
15 Zaidi H, Menicucci N C, Flammia S T, Bloomer R, Pysher M, Pfister O. Entangling the optical frequency comb: Simultaneous generation of multiple 2 × 2 and 2 × 3 continuous-variable cluster states in a single optical parametric oscillator. Laser Physics, 2008, 18(5): 659–666
https://doi.org/10.1134/S1054660X08050186
16 Roslund J, de Araújo R M, Jiang S, Fabre C, Treps N. Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nature Photonics, 2014, 8(2): 109–112
https://doi.org/10.1038/nphoton.2013.340
17 Reimer C, Caspani L, Clerici M, Ferrera M, Kues M, Peccianti M, Pasquazi A, Razzari L, Little B E, Chu S T, Moss D J, Morandotti R. Integrated frequency comb source of heralded single photons. Optics Express, 2014, 22(6): 6535–6546
https://doi.org/10.1364/OE.22.006535 pmid: 24664002
18 Harris N C, Grassani D, Simbula A, Pant M, Galli M, Baehr-Jones T, Hochberg M, Englund D, Bajoni D, Galland C. Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems. Physical Review X, 2014, 4(4): 041047
https://doi.org/10.1103/PhysRevX.4.041047
19 Azzini S, Grassani D, Strain M J, Sorel M, Helt L G, Sipe J E, Liscidini M, Galli M, Bajoni D. Ultra-low power generation of twin photons in a compact silicon ring resonator. Optics Express, 2012, 20(21): 23100–23107
https://doi.org/10.1364/OE.20.023100 pmid: 23188274
20 Reimer C, Kues M, Caspani L, Wetzel B, Roztocki P, Clerici M, Jestin Y, Ferrera M, Peccianti M, Pasquazi A, Little B E, Chu S T, Moss D J, Morandotti R. Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip. Nature Communications, 2015, 6(1): 8236
https://doi.org/10.1038/ncomms9236 pmid: 26364999
21 Caspani L, Xiong C, Eggleton B J, Bajoni D, Liscidini M, Galli M, Morandotti R, Moss D J. Integrated sources of photon quantum states based on nonlinear optics. Light, Science & Applications, 2017, 6(11): e17100
https://doi.org/10.1038/lsa.2017.100
22 Reimer C, Kues M, Roztocki P, Wetzel B, Grazioso F, Little B E, Chu S T, Johnston T, Bromberg Y, Caspani L, Moss D J, Morandotti R. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science, 2016, 351(6278): 1176–1180
https://doi.org/10.1126/science.aad8532 pmid: 26965623
23 Mazeas F, Traetta M, Bentivegna M, Kaiser F, Aktas D, Zhang W, Ramos C A, Ngah L A, Lunghi T, Picholle É, Belabas-Plougonven N, Le Roux X, Cassan É, Marris-Morini D, Vivien L, Sauder G, Labonté L, Tanzilli S. High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip. Optics Express, 2016, 24(25): 28731–28738
https://doi.org/10.1364/OE.24.028731 pmid: 27958516
24 Jaramillo-Villegas J A, Imany P, Odele O D, Leaird D E, Ou Z Y, Qi M, Weiner A M. Persistent energy–time entanglement covering multiple resonances of an on-chip biphoton frequency comb. Optica, 2017, 4(6): 655–658
https://doi.org/10.1364/OPTICA.4.000655
25 Grassani D, Azzini S, Liscidini M, Galli M, Strain M J, Sorel M, Sipe J E, Bajoni D. Micrometer-scale integrated silicon source of time-energy entangled photons. Optica, 2015, 2(2): 88–94
https://doi.org/10.1364/OPTICA.2.000088
26 Silverstone J W, Santagati R, Bonneau D, Strain M J, Sorel M, O’Brien J L, Thompson M G. Qubit entanglement between ring-resonator photon-pair sources on a silicon chip. Nature Communications, 2015, 6(1): 7948
https://doi.org/10.1038/ncomms8948 pmid: 26245267
27 Kues M, Reimer C, Roztocki P, Cortés L R, Sciara S, Wetzel B, Zhang Y, Cino A, Chu S T, Little B E, Moss D J, Caspani L, Azaña J, Morandotti R. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 2017, 546(7660): 622–626
https://doi.org/10.1038/nature22986 pmid: 28658228
28 Yokoyama S, Ukai R, Armstrong S C, Sornphiphatphong C, Kaji T, Suzuki S, Yoshikawa J, Yonezawa H, Menicucci N C, Furusawa A. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nature Photonics, 2013, 7(12): 982–986
https://doi.org/10.1038/nphoton.2013.287
29 Pysher M, Miwa Y, Shahrokhshahi R, Bloomer R, Pfister O. Parallel generation of quadripartite cluster entanglement in the optical frequency comb. Physical Review Letters, 2011, 107(3): 030505
https://doi.org/10.1103/PhysRevLett.107.030505 pmid: 21838341
30 Chen M, Menicucci N C, Pfister O. Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. Physical Review Letters, 2014, 112(12): 120505
https://doi.org/10.1103/PhysRevLett.112.120505 pmid: 24724640
31 Lukens J M, Lougovski P. Frequency-encoded photonic qubits for scalable quantum information processing. Optica, 2017, 4(1): 8–16
https://doi.org/10.1364/OPTICA.4.000008
32 Gerke S, Sperling J, Vogel W, Cai Y, Roslund J, Treps N, Fabre C. Full multipartite entanglement of frequency-comb Gaussian states. Physical Review Letters, 2015, 114(5): 050501
https://doi.org/10.1103/PhysRevLett.114.050501 pmid: 25699426
33 Menicucci N C. Fault-tolerant measurement-based quantum computing with continuous-variable cluster states. Physical Review Letters, 2014, 112(12): 120504
https://doi.org/10.1103/PhysRevLett.112.120504 pmid: 24724639
34 Bonneau D, Silverstone J W, Thompson M G. In: Pavesi L, Lockwood D J, eds. Silicon Photonics III. Heidelberg: Springer, 2016, 41–82
35 Tanzilli S, Martin A, Kaiser F, De Micheli M P, Alibart O, Ostrowsky D B. On the genesis and evolution of integrated quantum optics. Laser & Photonics Reviews, 2012, 6(1): 115–143
https://doi.org/10.1002/lpor.201100010
36 Sharping J E, Lee K F, Foster M A, Turner A C, Schmidt B S, Lipson M, Gaeta A L, Kumar P. Generation of correlated photons in nanoscale silicon waveguides. Optics Express, 2006, 14(25): 12388–12393
https://doi.org/10.1364/OE.14.012388 pmid: 19529670
37 Engin E, Bonneau D, Natarajan C M, Clark A S, Tanner M G, Hadfield R H, Dorenbos S N, Zwiller V, Ohira K, Suzuki N, Yoshida H, Iizuka N, Ezaki M, O’Brien J L, Thompson M G. Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement. Optics Express, 2013, 21(23): 27826–27834
https://doi.org/10.1364/OE.21.027826 pmid: 24514299
38 Horn R T, Kolenderski P, Kang D, Abolghasem P, Scarcella C, Frera A D, Tosi A, Helt L G, Zhukovsky S V, Sipe J E, Weihs G, Helmy A S, Jennewein T. Inherent polarization entanglement generated from a monolithic semiconductor chip. Scientific Reports, 2013, 3(1): 2314
https://doi.org/10.1038/srep02314 pmid: 23896982
39 Carolan J, Harrold C, Sparrow C, Martín-López E, Russell N J, Silverstone J W, Shadbolt P J, Matsuda N, Oguma M, Itoh M, Marshall G D, Thompson M G, Matthews J C, Hashimoto T, O’Brien J L, Laing A. Universal linear optics. Science, 2015, 349(6249): 711–716
https://doi.org/10.1126/science.aab3642 pmid: 26160375
40 Politi A, Matthews J C F, O’Brien J L. Shor’s quantum factoring algorithm on a photonic chip. Science, 2009, 325(5945): 1221
https://doi.org/10.1126/science.1173731 pmid: 19729649
41 Spring J B, Metcalf B J, Humphreys P C, Kolthammer W S, Jin X M, Barbieri M, Datta A, Thomas-Peter N, Langford N K, Kundys D, Gates J C, Smith B J, Smith P G, Walmsley I A. Boson sampling on a photonic chip. Science, 2013, 339(6121): 798–801
https://doi.org/10.1126/science.1231692 pmid: 23258407
42 Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs. Science, 2011, 332(6029): 555–559
https://doi.org/10.1126/science.1193968 pmid: 21527707
43 Pasquazi A, Peccianti M, Razzari L, Moss D J, Coen S, Erkintalo M, Chembo Y K, Hansson T, Wabnitz S, Del’Haye P, Xue X, Weiner A M, Morandotti R. Micro-combs: a novel generation of optical sources. Physics Reports, 2018, 729: 1–81
https://doi.org/10.1016/j.physrep.2017.08.004
44 Jiang W C, Lu X, Zhang J, Painter O, Lin Q. Silicon-chip source of bright photon pairs. Optics Express, 2015, 23(16): 20884–20904
https://doi.org/10.1364/OE.23.020884 pmid: 26367942
45 Hemsley E, Bonneau D, Pelc J, Beausoleil R, O’Brien J L, Thompson M G. Photon pair generation in hydrogenated amorphous silicon microring resonators. Scientific Reports, 2016, 6(1): 38908
https://doi.org/10.1038/srep38908 pmid: 27996014
46 Carmon T, Yang L, Vahala K. Dynamical thermal behavior and thermal self-stability of microcavities. Optics Express, 2004, 12(20): 4742–4750
https://doi.org/10.1364/OPEX.12.004742 pmid: 19484026
47 Roztocki P, Kues M, Reimer C, Wetzel B, Sciara S, Zhang Y, Cino A, Little B E, Chu S T, Moss D J, Morandotti R. Practical system for the generation of pulsed quantum frequency combs. Optics Express, 2017, 25(16): 18940–18949
https://doi.org/10.1364/OE.25.018940 pmid: 29041085
48 Moss D J, Morandotti R, Gaeta A L, Lipson M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nature Photonics, 2013, 7(8): 597–607
https://doi.org/10.1038/nphoton.2013.183
49 Caspani L, Reimer C, Kues M, Roztocki P, Clerici M, Wetzel B, Jestin Y, Ferrera M, Peccianti M, Pasquazi A, Razzari L, Little B E, Chu S T, Moss D J, Morandotti R. Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs. Nanophotonics, 2016, 5(2): 351–362
https://doi.org/10.1515/nanoph-2016-0029
50 Caspani L, Xiong C, Eggleton B J, Bajoni D, Liscidini M, Galli M, Morandotti R, Moss D J. Integrated sources of photon quantum states based on nonlinear optics. Light: Science & Applications, 2017, 6: e17100
50 Imany P, Jaramillo-Villegas J A, Odele O D, Han K, Leaird D E, Lukens J M, Lougovski P, Qi M, Weiner A M. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator. Optics Express, 2018, 26(2): 1825–1840
https://doi.org/10.1364/OE.26.001825 pmid: 29401906
51 Lu H H, Lukens J M, Peters N A, Odele O D, Leaird D E, Weiner A M, Lougovski P. Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing. Physical Review Letters, 2018, 120(3): 030502
https://doi.org/10.1103/PhysRevLett.120.030502 pmid: 29400520
52 Lu H H, Lukens J M, Peters N A, Williams B P, Weiner A M, Lougovski P. Controllable two-photon interference with versatile quantum frequency processor. arXiv preprint arXiv:1803.10712 (2018)
[1] Kejia WANG, Xinyang GU, Jinsong LIU, Zhengang YANG, Shenglie WANG. Proposal for CEP measurement based on terahertz air photonics[J]. Front. Optoelectron., 2018, 11(4): 407-412.
[2] Eric Y. ZHU, Costantino CORBARI, Alexey V. GLADYSHEV, Peter G. KAZANSKY, Li QIAN. Franson interferometry with a single pulse[J]. Front. Optoelectron., 2018, 11(2): 148-154.
[3] Yi YU,Evarist PALUSHANI,Mikkel HEUCK,Leif Katsuo OXENLØWE,Kresten YVIND,Jesper MØRK. Switching dynamics in InP photonic-crystal nanocavity[J]. Front. Optoelectron., 2016, 9(3): 395-398.
[4] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[5] Xian ZHU, Xinben ZHANG, Jinggang PENG, Xiang CHEN, Jinyan LI. Photonic crystal fibers for supercontinuumβgeneration[J]. Front Optoelec Chin, 2011, 4(4): 415-419.
[6] Yujie ZHOU, Liqun FENG, Qian HU, Junqiang SUN. Mode overlap analyses of propagated waves in direct bonded PPMgLN ridge waveguide[J]. Front Optoelec Chin, 2011, 4(3): 343-347.
[7] Qingchang LIANG, Haihua WANG, Zhankui JIANG. Investigation on electromagnetically induced transparency and slowdown of group velocity in an Eu3+:Y2SiO5 crystal[J]. Front Optoelec Chin, 2008, 1(3-4): 318-322.
[8] LIU Bo, ZHANG Ruobing, LIU Huagang, MA Jing, ZHU Chen, WANG Qingyue. Investigation of spectral bandwidth of BBO-I phase matching non-collinear optical parametric amplification from visible to near-infrared[J]. Front. Optoelectron., 2008, 1(1-2): 101-108.
[9] Ren Tiexiong, Yu Jian, Sang Mei, Fu Weijia, Ni Wenjun, Kang Yuzhuo, Li Shichen, Hu Yonglan, Shi Ruize. Real-time monitoring in fabrication of PPKTP crystals utilizing electro-optical effect[J]. Front. Optoelectron., 2008, 1(1-2): 151-155.
[10] WANG Jian, SUN Junqiang, SUN Qizhen, ZHANG Weiwei, HU Zhefeng, ZHANG Xinliang, HUANG Dexiu. Experimental realization of 40 Gbit/s single-to-single and single-to-dual channel wavelength conversions in LiNbO waveguides with two-pump configuration[J]. Front. Optoelectron., 2008, 1(1-2): 3-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed