Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2011, Vol. 4 Issue (4) : 415-419    https://doi.org/10.1007/s12200-011-0134-0
REVIEW ARTICLE
Photonic crystal fibers for supercontinuumβgeneration
Xian ZHU, Xinben ZHANG, Jinggang PENG, Xiang CHEN, Jinyan LI()
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(258 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Photonic crystal fibers (PCFs) present a wavelength-scale periodic microstructure along their length. Their core and two-dimensional photonic crystal might be based on varied geometries and materials, allowing supercontinuum (SC) generation due to nonlinear effects in an extremely large wavelength range. In this paper we have reviewed PCFs utilized for SC generation. Fiber fabrication for SC generation is present. Spectral broadening mechanisms are also described in brief. Particular attention is as well as paid to PCFs including uniform PCFs, cascaded fibers, tapered fibers and PCFs with special material doped, which are commonly used to generate SC.

Keywords photonic crystal fibers (PCFs)      supercontinuum (SC)      PCF fabrication      nonlinear optics      tapered PCF      cascaded PCF      Ge-doped core     
Corresponding Author(s): LI Jinyan,Email:ljy@mail.hust.edu.cn   
Issue Date: 05 December 2011
 Cite this article:   
Xian ZHU,Xinben ZHANG,Jinggang PENG, et al. Photonic crystal fibers for supercontinuumβgeneration[J]. Front Optoelec Chin, 2011, 4(4): 415-419.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0134-0
https://academic.hep.com.cn/foe/EN/Y2011/V4/I4/415
Fig.1  Process of PCFs fabrication
Fig.2  Evolution of SC spectra in PCF with varied pump power with output mode shape in extreme blue region showing in the inset
Fig.3  Dispersion curves for the first- and second-stage fibers in cascaded set-up
Fig.4  (a) Output of the first stage; (b) spectrum obtained when pumping the second stage fiber with pump laser; (c) spectrum achieved when pumping the second fiber with the output of first stage
Fig.5  Experimental setup: NOPA, non-collinear optical parametric amplifier; λ/2, half-wave-plate; ND, neutral-density filter; 40×, in-coupling lens
parametersL/mCR/(W-1·km-1)γ/(W-1·km-1)spectrum/nmoutput/W
GeO23001737570–20403.5
Si4002.610850–13503.7
Tab.1  Comparison between when respectively pumped at 1064 nm from Yb doped fiber laser
Fig.6  Spectra recorded for (a) launched power of 13 W in GeO-doped-core PCF (solid curve), and pure silica PCF (dashed curve); (b) corresponding group-velocity curves
1 Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics , 2006, 78(4): 1135–1184
doi: 10.1103/RevModPhys.78.1135
2 Genty G, Coen S, Dudley J M. Fiber supercontinuum sources. Journal of the Optical Society of America B, Optical Physics , 2007, 24(8): 1771–1785
doi: 10.1364/JOSAB.24.001771
3 Cerqueira A S Jr. Recent progress and novel applications of photonic crystal fibers.Reports on Progress in Physics , 2010, 73(2): 024401–024422
4 Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letters , 2000, 25(1): 25–27
doi: 10.1364/OL.25.000025
5 Frosz M H. Supercontinuum Generation in Photonic Crystal Fibres: Modelling and Dispersion Engineering for Spectral Shaping. Department of Communications, Optics & Materials. Technical University of Denmark , 2006
6 Moselund P M. Long-Pulse Supercontinuum Light Sources. Department of Photonics Engineering. Technical University of Denmark , 2009
7 Russell P St J.Photonic-crystal fibers. Journal of Lightwave Technology , 2006, 24(12): 4729–4749
doi: 10.1109/JLT.2006.885258
8 Cascante J V, Torres P S, Diez A, Andres M V. Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber. Applied Physics. B: Lasers and Optics, 2010, 98(2-3): 371–376
doi: 10.1007/s00340-009-3723-5
9 Travers J C, Rulkov A B, Cumberland B A, Popov S V, Taylor J R. Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser. Optics Express , 2008, 16(19): 14435–14447
doi: 10.1364/OE.16.014435
10 Travers J C, Popov S V, Taylor J R. Extended blue supercontinuum generation in cascaded holey fibers. Optics Letters , 2005, 30(23): 3132–3135
doi: 10.1364/OL.30.003132
11 Mussot A, Kudlinski A, Beugnot J C, Sylvester T, Gonzalez H M, Bouwmans G. Extended blue side of flat supercontinuum generation in PCFs with a CW Yb fiber laser. In: IEEE/LEOS Winter Topical Meeting Series , 2008, 178–179
12 Cumberland B A, Travers J C, Popov S V, Taylor J R. Toward visible cw-pumped supercontinua. Optics Letters , 2008, 33(18): 2122–2124
doi: 10.1364/OL.33.002122
13 Skryabin D V, Gorbach A V. Colloquium looking at a soliton through the prism of optical supercontinuum. Reviews of Modern Physics , 2010, 82(2): 1287–1299
doi: 10.1103/RevModPhys.82.1287
14 Dudley J M, Provino L, Grossard N, Maillotte H, Windeler R S, Eggleton B J, Coen S. Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping. Journal of the Optical Society of America. B, Optical Physics , 2002, 19(4): 756–771
15 Ghosh D, Roy S, Pal M, Leproux P, Viale P, Tombelaine V, Bhadra S K. Blue-extended sub-nanosecond supercontinuum generation in simply designed nonlinear microstructured optical fibers. Journal of Lightwave Technology , 2011, 29(2): 146–152
doi: 10.1109/JLT.2010.2096458
16 Guo C Y, Ruan S C, Yan P G, Pan E, Wei H F. Flat supercontinuum generation in cascaded fibers pumped by a continuous wave laser. Optics Express , 2010, 18(11): 11046–11051
17 Travers J C. Blue extension of optical fibre supercontinuum generation. Journal of Optics , 2010, 12(11): 113001–113020
18 Kudlinski A, George A K, Knight J C, Travers J C, Rulkov A B, Popov S V, Taylor J R. Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation. Optics Express , 2006, 14(12): 5715–5722
doi: 10.1364/OE.14.005715
19 Stark S P, Podlipensky A, Joly N Y, Russell P S J. Ultraviolet-enhanced supercontinuum generation. Journal of the Optical Society of America B, Optical Physics , 2009, 27(3): 592–598
doi: 10.1364/JOSAB.27.000592
20 Kudlinski A, Bouwmans G, Vanvincq O, Quiquempois Y, Rouge A L, Bigot L, Melin G, Mussot A. White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers. Optics Letters , 2009, 34(23):3631–3633
doi: 10.1364/OL.34.003631
21 Bethge J, Husakou A, Mitschke F, Noack F, Griebner U, Steinmeyer G, Herrmann J. Two-octave supercontinuum generation in a water-filled photonic crystal fiber. Optics Express , 2010, 18(6): 6230–6240
doi: 10.1364/OE.18.006230
[1] Kejia WANG, Xinyang GU, Jinsong LIU, Zhengang YANG, Shenglie WANG. Proposal for CEP measurement based on terahertz air photonics[J]. Front. Optoelectron., 2018, 11(4): 407-412.
[2] Eric Y. ZHU, Costantino CORBARI, Alexey V. GLADYSHEV, Peter G. KAZANSKY, Li QIAN. Franson interferometry with a single pulse[J]. Front. Optoelectron., 2018, 11(2): 148-154.
[3] Christian REIMER, Yanbing ZHANG, Piotr ROZTOCKI, Stefania SCIARA, Luis Romero CORTÉS, Mehedi ISLAM, Bennet FISCHER, Benjamin WETZEL, Alfonso Carmelo CINO, Sai Tak CHU, Brent LITTLE, David MOSS, Lucia CASPANI, José AZAÑA, Michael KUES, Roberto MORANDOTTI. On-chip frequency combs and telecommunications signal processing meet quantum optics[J]. Front. Optoelectron., 2018, 11(2): 134-147.
[4] Yi YU,Evarist PALUSHANI,Mikkel HEUCK,Leif Katsuo OXENLØWE,Kresten YVIND,Jesper MØRK. Switching dynamics in InP photonic-crystal nanocavity[J]. Front. Optoelectron., 2016, 9(3): 395-398.
[5] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[6] Kaiwei LI,Ting ZHANG,Nan ZHANG,Mengying ZHANG,Jing ZHANG,Tingting WU,Shaoyang MA,Junying WU,Ming CHEN,Yi HE,Lei WEI. Integrated liquid crystal photonic bandgap fiber devices[J]. Front. Optoelectron., 2016, 9(3): 466-482.
[7] Wei JIN, Jian JU, Hoi Lut HO, Yeuk Lai HOO, Ailing ZHANG. Photonic crystal fibers, devices, and applications[J]. Front Optoelec, 2013, 6(1): 3-24.
[8] Yujie ZHOU, Liqun FENG, Qian HU, Junqiang SUN. Mode overlap analyses of propagated waves in direct bonded PPMgLN ridge waveguide[J]. Front Optoelec Chin, 2011, 4(3): 343-347.
[9] LIU Bo, ZHANG Ruobing, LIU Huagang, MA Jing, ZHU Chen, WANG Qingyue. Investigation of spectral bandwidth of BBO-I phase matching non-collinear optical parametric amplification from visible to near-infrared[J]. Front. Optoelectron., 2008, 1(1-2): 101-108.
[10] Ren Tiexiong, Yu Jian, Sang Mei, Fu Weijia, Ni Wenjun, Kang Yuzhuo, Li Shichen, Hu Yonglan, Shi Ruize. Real-time monitoring in fabrication of PPKTP crystals utilizing electro-optical effect[J]. Front. Optoelectron., 2008, 1(1-2): 151-155.
[11] WANG Zhi, LIU Yange, KAI Guiyun, LIU Bo, ZHANG Chunshu, JIN Long, FANG Qiang, YUAN Shuzhong, DONG Xiaoyi. Guided properties and applications of photonic bandgap fibers[J]. Front. Optoelectron., 2008, 1(1-2): 25-32.
[12] WANG Jian, SUN Junqiang, SUN Qizhen, ZHANG Weiwei, HU Zhefeng, ZHANG Xinliang, HUANG Dexiu. Experimental realization of 40 Gbit/s single-to-single and single-to-dual channel wavelength conversions in LiNbO waveguides with two-pump configuration[J]. Front. Optoelectron., 2008, 1(1-2): 3-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed