Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (4) : 482-490    https://doi.org/10.1007/s12200-021-1217-1
RESEARCH ARTICLE
Rapid thermal evaporation for cadmium selenide thin-film solar cells
Kanghua LI1, Xuetian LIN1,2, Boxiang SONG1, Rokas KONDROTAS3, Chong WANG1, Yue LU1,2, Xuke YANG1, Chao CHEN1(), Jiang TANG1,2
1. Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
2. China-EU Institute for Clean and Renewable Energy (ICARE), Huazhong University of Science and Technology, Wuhan 430074, China
3. State Research Institute, Center for Physical Sciences and Technology, Vilnius 02300, Lithuania
 Download: PDF(1121 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cadmium selenide (CdSe) belongs to the binary II-VI group semiconductor with a direct bandgap of ~1.7 eV. The suitable bandgap, high stability, and low manufacturing cost make CdSe an extraordinary candidate as the top cell material in silicon-based tandem solar cells. However, only a few studies have focused on CdSe thin-film solar cells in the past decades. With the advantages of a high deposition rate (~2 µm/min) and high uniformity, rapid thermal evaporation (RTE) was used to maximize the use efficiency of CdSe source material. A stable and pure hexagonal phase CdSe thin film with a large grain size was achieved. The CdSe film demonstrated a 1.72 eV bandgap, narrow photoluminescence peak, and fast photoresponse. With the optimal device structure and film thickness, we finally achieved a preliminary efficiency of 1.88% for CdSe thin-film solar cells, suggesting the applicability of CdSe thin-film solar cells.

Keywords cadmium selenide (CdSe)      rapid thermal evaporation (RTE)      solar cells      thin film     
Corresponding Author(s): Chao CHEN   
Just Accepted Date: 16 April 2021   Online First Date: 14 May 2021    Issue Date: 06 December 2021
 Cite this article:   
Kanghua LI,Xuetian LIN,Boxiang SONG, et al. Rapid thermal evaporation for cadmium selenide thin-film solar cells[J]. Front. Optoelectron., 2021, 14(4): 482-490.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-021-1217-1
https://academic.hep.com.cn/foe/EN/Y2021/V14/I4/482
Fig.1  (a) Schematic diagram of RTE. (b) Curves of the saturation vapor pressure of Cd, Se, and CdSe with temperature. (c) XRD spectra of CdSe powder and thin film
Fig.2  Optoelectronic properties of CdSe films. (a) Transmittance and PL spectra of CdSe thin film. (b) UPS spectra of CdSe thin film. The inset is the zoom-in image in the range of 0–2.5 eV. (c) IV curves and (d) It curve of CdSe photo-conductance type detector under dark and 530 nm LED illumination
Fig.3  (a) Device structure schematic of CdSe thin-film solar cell. (b) Schematic diagram of energy band structure and charge transfer in CdSe solar cell. (c) JV curves of CdSe solar cells with PEDOT, CuI, and PEDOT/CuI as HTL. (d) JV curves of CdSe solar cells with TiO2/CdS and ZnO/CdS as ETL
Fig.4  (a)–(c) Surface SEM images and (d)–(f) cross-sectional SEM images of CdSe thin film with different thicknesses
Fig.5  (a) JV curves and (b) EQE spectra of CdSe thin-film solar cells with different CdSe thickness. The schematic diagram of holes collection as minority light generated carrier in (c) the thick device and (d) the thin device
thickness/nm VOC/V JSC/(mA·cm−2) FF/% PCE/%
500 0.501 6.45 58.1 1.88
1800 0.454 3.23 50.0 0.73
2900 0.222 0.17 53.1 0.02
Tab.1  Device performance of CdSe solar cell with different thicknesses
1 M Hermle, F Feldmann, M Bivour, J C Goldschmidt, S W Glunz. Passivating contacts and tandem concepts: Approaches for the highest silicon-based solar cell efficiencies. Applied Physics Reviews, 2020, 7(2): 021305–021312
https://doi.org/10.1063/1.5139202
2 F Meillaud, A Shah, C Droz, E Vallat-Sauvain, C Miazza. Efficiency limits for single-junction and tandem solar cells. Solar Energy Materials and Solar Cells, 2006, 90(18–19): 2952–2959
https://doi.org/10.1016/j.solmat.2006.06.002
3 D B E Rickus. The CdSe thin-film solar cell. Conference Record of the IEEE Photovoltaic Specialists Conference, 1980, 1: 629–632
4 S Lu, C Chen, J Tang. Possible top cells for next-generation Si-based tandem solar cells. Frontiers of Optoelectronics, 2020, 13(3): 246–255
https://doi.org/10.1007/s12200-020-1050-y
5 M Yamaguchi, K H Lee, K Araki, N Kojima. A review of recent progress in heterogeneous silicon tandem solar cells. Journal of Physics D, Applied Physics, 2018, 51(13): 133002–133015
https://doi.org/10.1088/1361-6463/aaaf08
6 T Todorov, O Gunawan, S Guha. A road towards 25% efficiency and beyond: perovskite tandem solar cells. Molecular Systems Design & Engineering, 2016, 1(4): 370–376
https://doi.org/10.1039/C6ME00041J
7 T K Todorov, D M Bishop, Y S Lee. Materials perspectives for next-generation low-cost tandem solar cells. Solar Energy Materials and Solar Cells, 2018, 180: 350–357
https://doi.org/10.1016/j.solmat.2017.07.033
8 G Bakiyaraj, R Dhanasekaran. Effect of annealing on the properties of chemical bath deposited nanorods of CdSe thin films. Crystal Research and Technology, 2012, 47(9): 960–966
https://doi.org/10.1002/crat.201200196
9 B Bagheri, R Kottokkaran, L P Poly, S Sharikadze, V Dalal. Efficient heterojunction thin film CdSe solar cells deposited using thermal evaporation. In: Proceedings of IEEE 46th Photovoltaic Specialists Conference (PVSC). Chicago: IEEE, 2019, 1822–1825
10 S B Che, I Nomura, A Kikuchi, K Shimomura, K J P S S Kishino. Visible light emitting diode with ZnCdSe/BeZnTe superlattices as an active layer and MgSe/BeZnTe superlattices as a p-cladding layer. Physica Status Solidi (B): Basic Solid State Physics, 2002, 229(2): 1001–1004
11 S Jia, X Yun, Y An, P Li, J Xiao. Fabrication and characterization of photo-detector based on CdSe0.5S0.5 quantum dots. Asia Communications & Photonics Conference, 2013, 2013: 978–981
12 P Mahawela, S Jeedigunta, S Vakkalanka, C S Ferekides, D L J T S F Morel. Transparent high-performance CdSe thin-film solar cells. Thin Solid Films, 2005, 480–481(3): 466–470
13 C Wang, X Du, S Wang, H Deng, C Chen, G Niu, J Pang, K Li, S Lu, X Lin, H Song, J Tang. Sb2Se3 film with grain size over 10 µm toward X-ray detection. Frontiers of Optoelectronics, 2020, doi:10.1007/s12200-020-1064-5
https://doi.org/10.1007/s12200-020-1064-5
14 Y M Shin, C S Lee, D H Shin, H S Kwon, B G Park, B T Ahn. Surface modification of CIGS film by annealing and its effect on the band structure and photovoltaic properties of CIGS solar cells. Current Applied Physics, 2015, 15(1): 18–24
https://doi.org/10.1016/j.cap.2014.09.023
15 H Song, X Zhan, D Li, Y Zhou, B Yang, K Zeng, J Zhong, X Miao, J Tang. Rapid thermal evaporation of Bi2S3 layer for thin film photovoltaics. Solar Energy Materials and Solar Cells, 2016, 146: 1–7
https://doi.org/10.1016/j.solmat.2015.11.019
16 D J Xue, S C Liu, C M Dai, S Chen, C He, L Zhao, J S Hu, L J Wan. GeSe thin-film solar cells fabricated by self-regulated rapid thermal sublimation. Journal of the American Chemical Society, 2017, 139(2): 958–965
https://doi.org/10.1021/jacs.6b11705 pmid: 27997209
17 G A Somorjai. Vapor pressure and solid-vapor equilibrium of CdSe (cadmium selenide). Journal of Physical Chemistry, 1961, 65(6): 1059–1061
https://doi.org/10.1021/j100824a511
18 K Li, R Kondrotas, C Chen, S Lu, X Wen, D Li, J Luo, Y Zhao, J Tang. Improved efficiency by insertion of Zn1−xMgxO through sol-gel method in ZnO/Sb2Se3 solar cell. Solar Energy, 2018, 167: 10–17
https://doi.org/10.1016/j.solener.2018.03.081
19 J D Major, Y Y Proskuryakov, K Durose. Impact of CdTe surface composition on doping and device performance in close space sublimation deposited CdTe solar cells. Progress in Photovoltaics, 2013, 21(4): 436–443
20 Y P Gnatenko, P M Bukivskij, I O Faryna, A S Opanasyuk, M M Ivashchenko. Photoluminescence of high optical quality CdSe thin films deposited by close-spaced vacuum sublimation. Journal of Luminescence, 2014, 146: 174–177
https://doi.org/10.1016/j.jlumin.2013.09.070
21 L Tian, H Yang, J Ding, Q Li, Y Mu, Y Zhang. Synthesis of the wheat-like CdSe/CdTe thin film heterojunction and their photovoltaic applications. Current Applied Physics, 2014, 14(6): 881–885
https://doi.org/10.1016/j.cap.2014.04.003
22 C Chen, Y Zhao, S Lu, K Li, Y Li, B Yang, W Chen, L Wang, D Li, H Deng, F Yi, J Tang. Accelerated optimization of TiO2/Sb2Se3 thin film solar cells by high-throughput combinatorial approach. Advanced Energy Materials, 2017, 7(20): 1700866
https://doi.org/10.1002/aenm.201700866
23 R B Parsons, W Wardzynski, A D Yoffe. The optical properties of single crystals of cadmium selenide. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1961, 262(1308): 120–131
https://doi.org/10.1098/rspa.1961.0106
24 H N Rosly, K S Rahman, M N Harif, C Doroody, M Isah, H Misran, N Amin. Annealing temperature assisted microstructural and optoelectrical properties of CdSe thin film grown by RF magnetron sputtering. Superlattices and Microstructures, 2020, 148: 106716
https://doi.org/10.1016/j.spmi.2020.106716
25 Z H Ni, B Kong, T X Zeng, H Yang, Z Y He. The effects of the intrinsic defects on the electronic, magnetic and optical properties for bulk and monolayer CdSe: first-principles GGA+ U investigations. Materials Research Express, 2019, 6(10): 105903
https://doi.org/10.1088/2053-1591/ab37e0
26 K R Murali, K Srinivasan, D C Trivedi. Vacuum evaporated CdSe thin films and their characteristics. Materials Letters, 2005, 59(1): 15–18
https://doi.org/10.1016/j.matlet.2004.09.006
27 K R Murali, K Srinivasan, D C Trivedi. Structural and photoelectrochemical properties of CdSe thin films deposited by the vacuum evaporation technique. Materials Science and Engineering B, 2004, 111(1): 1–4
https://doi.org/10.1016/S0921-5107(03)00157-0
28 V Kosyak, A Opanasyuk, P M Bukivskij, Y P Gnatenko. Study of the structural and photoluminescence properties of CdTe polycrystalline films deposited by close-spaced vacuum sublimation. Journal of Crystal Growth, 2010, 312(10): 1726–1730
https://doi.org/10.1016/j.jcrysgro.2010.02.034
29 D Hariskos, M Powalla, N Chevaldonnet, D Lincot, A Schindler. Chemical bath deposition of CdS buffer layer: prospects of increasing materials yield and reducing waste. Thin Solid Films, 387(1–2): 179–181
30 M Y Leng, M Luo, C Chen, S K Qin, J Chen, J Zhong, J. TangSelenization of Sb2Se3 absorber layer: an efficient step to improve device performance of CdS/Sb2Se3 solar cells. Applied Physics Letters, 2014, 105(8): 083905
31 W D Hu, C Dall’Agnese, X F Wang, G Chen, M Z Li, J X Song, Y J Wei, T Miyasaka. Copper iodide-PEDOT:PSS double hole transport layers for improved efficiency and stability in perovskite solar cells. Journal of Photochemistry and Photobiology A Chemistry, 2018, 357: 36–40
https://doi.org/10.1016/j.jphotochem.2018.02.018
32 S Voswinckel, T Mikolajick, V Wesselak. Influence of the active leakage current pathway on the potential induced degradation of CIGS thin-film solar modules. Solar Energy, 2020, 197: 455–461
https://doi.org/10.1016/j.solener.2019.12.078
33 L Wang, D B Li, K Li, C Chen, H X Deng, L Gao, Y Zhao, F Jiang, L Li, F Huang, Y He, H Song, G Niu, J Tang. Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nature Energy, 2017, 2(4): 17046–17053
https://doi.org/10.1038/nenergy.2017.46
[1] FOE-21017-OF-LK_suppl_1 Download
[1] Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites[J]. Front. Optoelectron., 2020, 13(3): 196-224.
[2] Zhining WAN, Mi XU, Zhengyang FU, Da LI, Anyi MEI, Yue HU, Yaoguang RONG, Hongwei HAN. Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2019, 12(4): 344-351.
[3] Xiaofan ZHANG, Man LIU, Weiqian KONG, Hongbo FAN. Recent advances in solar cells and photo-electrochemical water splitting by scanning electrochemical microscopy[J]. Front. Optoelectron., 2018, 11(4): 333-347.
[4] Ru GE, Fei QIN, Lin HU, Sixing XIONG, Yinhua ZHOU. High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells[J]. Front. Optoelectron., 2018, 11(4): 360-366.
[5] Tao YUAN, Zhonghuan CAO, Guoli TU. Indium tin oxide-free inverted polymer solar cells with ultrathin metal transparent electrodes[J]. Front. Optoelectron., 2017, 10(4): 402-408.
[6] Yinan ZHANG, Min GU. Plasmonic light trapping for wavelength-scale silicon solar absorbers[J]. Front. Optoelectron., 2016, 9(2): 277-282.
[7] Yuanyuan ZHOU,Hector F. GARCES,Nitin P. PADTURE. Challenges in the ambient Raman spectroscopy characterization of methylammonium lead triiodide perovskite thin films[J]. Front. Optoelectron., 2016, 9(1): 81-86.
[8] Jie SHI,Zhaofei CHAI,Runli TANG,Huiyang LI,Hongwei HAN,Tianyou PENG,Qianqian LI,Zhen LI. Effect of electron-withdrawing groups in conjugated bridges: molecular engineering of organic sensitizers for dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 60-70.
[9] Xiaoyu ZHANG,Michael Grätzel,Jianli HUA. Donor design and modification strategies of metal-free sensitizers for highly-efficient n-type dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 3-37.
[10] Qingsong LEI,Jiang LI. High conductive and transparent Al doped ZnO films for a-SiGe:H thin film solar cells[J]. Front. Optoelectron., 2015, 8(3): 298-305.
[11] Yue QIAN,Rong LIU,Xiujuan JIN,Bin LIU,Xianfu WANG,Jin XU,Zhuoran WANG,Gui CHEN,Junfeng CHAO. Optimised synthesis of close packed ZnO cloth and its applications in Li-ion batteries and dye-sensitized solar cells[J]. Front. Optoelectron., 2015, 8(2): 220-228.
[12] Kunpeng MA, Xiangbin ZENG, Qingsong LEI, Junming XUE, Yanzeng WANG, Chenguang ZHAO. Texturization and rounded process of silicon wafers for heterojunction with intrinsic thin-layer solar cells[J]. Front Optoelec, 2014, 7(1): 46-52.
[13] Heng WANG, Peng XIANG, Mi XU, Guanghui LIU, Xiong LI, Zhiliang KU, Yaoguang RONG, Linfeng LIU, Min HU, Ying YANG, Hongwei HAN. High efficiency monobasal solid-state dye-sensitized solar cell with mesoporous TiO2 beads as photoanode[J]. Front Optoelec, 2013, 6(4): 413-417.
[14] Kun CAO, Mingkui WANG. Recent developments in sensitizers for mesoporous sensitized solar cells[J]. Front Optoelec, 2013, 6(4): 373-385.
[15] Yaoguang RONG, Guanghui LIU, Heng WANG, Xiong LI, Hongwei HAN. Monolithic all-solid-state dye-sensitized solar cells[J]. Front Optoelec, 2013, 6(4): 359-372.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed