Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2022, Vol. 15 Issue (3) : 32    https://doi.org/10.1007/s12200-022-00035-2
RESEARCH ARTICLE
Design of scalable metalens array for optical addressing
Tie Hu, Xing Feng, Zhenyu Yang, Ming Zhao()
School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(4817 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Large-scale trapped-ion quantum computers hold great promise to outperform classical computers and are crucially desirable for finance, pharmaceutical industry, fundamental chemistry and other fields. Currently, a big challenge for trapped-ion quantum computers is the poor scalability mainly brought by the optical elements that are used for optical addressing. Metasurfaces provide a promising solution due to their excellent flexibility and integration ability. Here, we propose and numerically demonstrate a scalable off-axis metalens array for optical addressing working at the wavelength of 350 nm. Metalens arrays designed for x linearly polarized and left circularly polarized light respectively can focus the collimated addressing beam array into a compact focused spot array with spot spacing of 5 μm, featuring crosstalk below 0.82%.

Keywords Metalens array      Optical addressing      Scalability     
Corresponding Author(s): Ming Zhao   
About author: Tongcan Cui and Yizhe Hou contributed equally to this work.
Issue Date: 23 August 2022
 Cite this article:   
Tie Hu,Xing Feng,Zhenyu Yang, et al. Design of scalable metalens array for optical addressing[J]. Front. Optoelectron., 2022, 15(3): 32.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-022-00035-2
https://academic.hep.com.cn/foe/EN/Y2022/V15/I3/32
1 C.D. Bruzewicz, , J. Chiaverini, , R. Mcconnell, , J.M. Sage, : Trapped-ion quantum computing: progress and challenges. Appl. Phys. Rev. 6 (2), 021314 (2019)
2 R.J. Niffenegger, , J. Stuart, , C. Sorace-Agaskar, , D. Kharas, , S. Bramhavar, , C.D. Bruzewicz, , W. Loh, , R.T. Maxson, , R. McConnell, , D. Reens, , G.N. West, , J.M. Sage, , J. Chiaverini, : Integrated multi-wavelength control of an ion qubit. Nature 586 (7830), 538- 542 (2020)
3 C.Y. Shih, , S. Motlakunta, , N. Kotibhaskar, , M. Sajjan, , R. Hablützel, , R. Islam, : Reprogrammable and high-precision holographic optical addressing of trapped ions for scalable quantum control. NPJ Quantum Information 7 (1), 57 (2021)
4 S. Debnath, , N.M. Linke, , C. Figgatt, , K.A. Landsman, , K. Wright, , C. Monroe, : Demonstration of a small programmable quantum computer with atomic qubits. Nature 536 (7614), 63- 66 (2016)
5 S. Olmschenk, , D.N. Matsukevich, , P. Maunz, , D. Hayes, , L.M. Duan, , C. Monroe, : Quantum teleportation between distant matter qubits. Science 323 (5913), 486- 489 (2009)
6 C. Knoernschild, , X.L. Zhang, , L. Isenhower, , A.T. Gill, , F.P. Lu, , M. Saffman, , J. Kim, : Independent individual addressing of multiple neutral atom qubits with a micromirror-based beam steering system. Appl. Phys. Lett. 97 (13), 134101 (2010)
7 S. Crain, , E. Mount, , S. Baek, , J. Kim, : Individual addressing of trapped 171Yb+ ion qubits using a microelectromechanical systems-based beam steering system. Appl. Phys. Lett. 105 (18), 181115 (2014)
8 E.W. Streed, , B.G. Norton, , A. Jechow, , T.J. Weinhold, , D. Kielpinski, : Imaging of trapped ions with a microfabricated optic for quantum information processing. Phys. Rev. Lett. 106 (1), 010502.1- 010502.4 (2011)
9 M. Ghadimi, , V. Blūms, , B.G. Norton, , P.M. Fisher, , S.C. Connell, , J.M. Amini, , C. Volin, , H. Hayden, , C.S. Pai, , D. Kielpinski, , M. Lobino, , E.W. Streed, : Scalable ion-photon quantum interface based on integrated diffractive mirrors. NPJ Quantum Information 3 (1), 4 (2017)
10 D. Kielpinski, , C. Volin, , E.W. Streed, , F. Lenzini, , M. Lobino, : Integrated optics architecture for trapped-ion quantum information processing. Quantum Inf. Process. 15 (12), 5315- 5338 (2016)
11 K.K. Mehta, , C.D. Bruzewicz, , R. McConnell, , R.J. Ram, , J.M. Sage, , J. Chiaverini, : Integrated optical addressing of an ion qubit. Nat. Nanotechnol. 11 (12), 1066- 1070 (2016)
12 K.K. Mehta, , R.J. Ram, : Precise and diffraction-limited wave-guide-to-free-space focusing gratings. Sci. Rep. 7 (1), 2019 (2017)
13 K.K. Mehta, , C. Zhang, , M. Malinowski, , T.L. Nguyen, , M. Stadler, , J.P. Home, : Integrated optical multi-ion quantum logic. Nature 586 (7830), 533- 537 (2020)
14 D. Neshev, , I. Aharonovich, : Optical metasurfaces: new generation building blocks for multi-functional optics. Light Sci. Appl. 7 (1), 58 (2018)
15 K. Huang, , F. Qin, , H. Liu, , H. Ye, , C. Qiu, , M. Hong, , B. Luk’yanchuk, , J. Teng, : Planar diffractive lenses: fundamentals, functionalities, and applications. Adv. Mater. 30, 1704556 (2018)
16 N.P. de Leon, , K.M. Itoh, , D. Kim, , K.K. Mehta, , T.E. Northup, , H. Paik, , B.S. Palmer, , N. Samarth, , S. Sangtawesin, , D.W. Steuerman, : Materials challenges and opportunities for quantum computing hardware. Science 372 (6539), eabb2823 (2021)
17 S.M. Kamali, , A. Arbabi, , E. Arbabi, , Y. Horie, , A. Faraon, : Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces. Nat. Commun. 7 (1), 11618 (2016)
18 Z.H. Jiang, , L. Kang, , D.H. Werner, : Conformal metasurface-coated dielectric waveguides for highly confined broadband optical activity with simultaneous low-visibility and reduced crosstalk. Nat. Commun. 8 (1), 356 (2017)
19 J.A. Dolan, , H. Cai, , L. Delalande, , X. Li, , A.B.F. Martinson, , J.J. de Pablo, , D. López, , P.F. Nealey, : Broadband liquid crystal tunable metasurfaces in the visible: liquid crystal inhomogeneities across the metasurface parameter space. ACS Photonics 8 (2), 567- 575 (2021)
20 M. Khorasaninejad, , F. Capasso, : Metalenses: versatile multifunctional photonic components. Science 358 (6367), eaam8100 (2017)
21 F. Capasso, : The future and promise of flat optics: a personal perspective. Nanophotonics 7 (6), 953- 957 (2018)
22 R. Zhao, , B. Sain, , Q. Wei, , C. Tang, , X. Li, , T. Weiss, , L. Huang, , Y. Wang, , T. Zentgraf, : Multichannel vectorial holographic display and encryption. Light Sci Appl 7 (1), 95 (2018)
23 M.K. Chen, , Y. Wu, , L. Feng, , Q. Fan, , M. Lu, , T. Xu, , D.P. Tsai, : Principles, functions, and applications of optical metalens. Adv. Opt. Mater. 9 (4), 2001414 (2021)
24 A. Leitis, , M.L. Tseng, , A. John-Herpin, , Y.S. Kivshar, , H. Altug, : Wafer-scale functional metasurfaces for mid-infrared photonics and biosensing. Adv. Mater. 33 (43), e2102232 (2021)
25 H.C. Wang, , C.H. Chu, , P.C. Wu, , H.H. Hsiao, , H.J. Wu, , J.W. Chen, , W.H. Lee, , Y.C. Lai, , Y.W. Huang, , M.L. Tseng, , S.W. Chang, , D.P. Tsai, : Ultrathin planar cavity metasurfaces. Small 14 (17), e1703920 (2018)
26 W. Zang, , Q. Yuan, , R. Chen, , L. Li, , T. Li, , X. Zou, , G. Zheng, , Z. Chen, , S. Wang, , Z. Wang, , S. Zhu, : Chromatic dispersion manipulation based on metalenses. Adv. Mater. 32 (27), e1904935 (2020)
27 W. Li, , J. Qi, , A. Sihvola, : Meta-imaging: from non-computational to computational. Adv. Opt. Mater. 8 (23), 2001000 (2020)
28 Q. Wei, , L. Huang, , T. Zentgraf, , Y. Wang, : Optical wavefront shaping based on functional metasurfaces. Nanophotonics 9 (5), 987- 1002 (2020)
29 G. Tkachenko, , D. Stellinga, , A. Ruskuc, , M. Chen, , K. Dholakia, , T.F. Krauss, : Optical trapping with planar silicon metalenses. Opt. Lett. 43 (14), 3224- 3227 (2018)
30 M.L. Tseng, , H.H. Hsiao, , C.H. Chu, , M.K. Chen, , G. Sun, , A.Q. Liu, , D.P. Tsai, : Metalenses: advances and applications. Adv. Opt. Mater. 6 (18), 1800554 (2018)
31 C. Zhang, , S. Divitt, , Q. Fan, , W. Zhu, , A. Agrawal, , Y. Lu, , T. Xu, , H.J. Lezec, : Low-loss metasurface optics down to the deep ultraviolet region. Light Sci. Appl. 9 (1), 55 (2020)
32 R.J. Lin, , V.C. Su, , S. Wang, , M.K. Chen, , T.L. Chung, , Y.H. Chen, , H.Y. Kuo, , J.W. Chen, , J. Chen, , Y.T. Huang, , J.H. Wang, , C.H. Chu, , P.C. Wu, , T. Li, , Z. Wang, , S. Zhu, , D.P. Tsai, : Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 14 (3), 227- 231 (2019)
33 Z. Yang, , Z. Wang, , Y. Wang, , X. Feng, , M. Zhao, , Z. Wan, , L. Zhu, , J. Liu, , Y. Huang, , J. Xia, , M. Wegener, : Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nat. Commun. 9 (1), 4607 (2018)
34 Y. Wang, , Z. Wang, , X. Feng, , M. Zhao, , C. Zeng, , G. He, , Z. Yang, , Y. Zheng, , J. Xia, : Dielectric metalens-based Hartmann-Shack array for a high-efficiency optical multiparameter detection system. Photonics Research 8 (4), 482- 489 (2020)
35 X. Feng, , Y.X. Wang, , Y.X. Wei, , T. Hu, , S.Y. Xiao, , G.Q. He, , M. Zhao, , J.S. Xia, , Z.Y. Yang, : Optical multiparameter detection system based on a broadband achromatic metalens array. Adv. Opt. Mater. 9 (19), 2100772 (2021)
36 L. Li, , Z. Liu, , X. Ren, , S. Wang, , V.C. Su, , M.K. Chen, , C.H. Chu, , H.Y. Kuo, , B. Liu, , W. Zang, , G. Guo, , L. Zhang, , Z. Wang, , S. Zhu, , D.P. Tsai, : Metalens-array-based high-dimensional and multiphoton quantum source. Science 368 (6498), 1487- 1490 (2020)
37 L. Gao, , F. Lemarchand, , M. Lequime, : Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering. Opt. Express 20, 15734- 15751 (2012)
38 T. Sun, , J. Hu, , X. Zhu, , F. Xu, , C. Wang, : Broadband single-chip full stokes polarization-spectral imaging based on all-dielectric spatial multiplexing metalens. Laser Photonics Rev. 16, 2100650 (2022)
39 M. Khorasaninejad, , W.T. Chen, , J. Oh, , F. Capasso, : Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy. Nano Lett. 16 (6), 3732- 3737 (2016)
40 L.R. Rabiner, , R.W. Schafer, , C.M. Rader, : The Chirp z-transform algorithm and its application. Bell Syst. Tech. J. 48 (5), 1249- 1292 (2014)
41 M. Meem, , S. Banerji, , C. Pies, , T. Oberbiermann, , A. Majumder, , B. Sensale-Rodriguez, , R. Menon, : Large-area, high-numericalaperture multi-level difractive lens via inverse design. Optica 7 (3), 252- 253 (2020)
[1] Min Tan, Yuhang Wang, Ken Xingze Wang, Yuan Yu, Xinliang Zhang. Circuit-level convergence of electronics and photonics: basic concepts and recent advances[J]. Front. Optoelectron., 2022, 15(2): 16-.
[2] Xia GUO, Xinxin LUAN, Wenjuan WANG, Chunwei GUO, Guangdi SHEN. Scalabilities of LEDs and VCSELs with tunnel-regenerated multi-active region structure[J]. Front Optoelec, 2013, 6(1): 97-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed