Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2024, Vol. 17 Issue (3) : 27    https://doi.org/10.1007/s12200-024-00131-5
Exceptional point enhanced nanoparticle detection in deformed Reuleaux-triangle microcavity
Jinhao Fei, Xiaobei Zhang(), Qi Zhang, Yong Yang, Zijie Wang, Chuanlu Deng, Yi Huang, Tingyun Wang
Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
 Download: PDF(4171 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we propose a deformed Reuleaux-triangle resonator (RTR) to form exceptional point (EP) which results in the detection sensitivity enhancement of nanoparticle. After introducing single nanoparticle to the deformed RTR at EP, frequency splitting obtains an enhancement of more than 6 times compared with non-deformed RTR. In addition, EP induced a result that the far field pattern of chiral mode responses significantly to external perturbation, corresponding to the change in internal chirality. Therefore, single nanoparticle with far distance of more than 4000 nm can be detected by measuring the variation of far field directional emission. Compared to traditional frequency splitting, the far field pattern produced in deformed RTR provides a cost-effective and convenient path to detect single nanoparticle at a long distance, without using tunable laser and external coupler. Our structure indicates great potential in high sensitivity sensor and label-free detector.

Keywords Exceptional point      Deformed microcavity      Nanoparticle detection      Far-field pattern     
Corresponding Author(s): Xiaobei Zhang   
Issue Date: 09 September 2024
 Cite this article:   
Jinhao Fei,Xiaobei Zhang,Qi Zhang, et al. Exceptional point enhanced nanoparticle detection in deformed Reuleaux-triangle microcavity[J]. Front. Optoelectron., 2024, 17(3): 27.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-024-00131-5
https://academic.hep.com.cn/foe/EN/Y2024/V17/I3/27
1 Y. Yang,, Z.J. Wang,, X.B. Zhang,, Q. Zhang,, T. Wang,: Recent progress of in-fiber WGM microsphere resonator. Front Optoelectron. 16(1), 10 (2023)
https://doi.org/10.1007/s12200-023-00066-3
2 X. Ouyang,, T. Liu,, Y. Zhang,, J. He,, Z. He,, A.P. Zhang,, H.Y. Tam,: Ultrasensitive optofluidic enzyme-linked immunosorbent assay by on-chip integrated polymer whispering-gallery-mode microlaser sensors. Lab Chip 20(14), 2438–2446 (2020)
https://doi.org/10.1039/D0LC00240B
3 X. Gao,, J. Li,, Z. Hao,, F. Bo,, C. Hu,, J. Wang,, Z. Liu,, Z.Y. Li,, G. Zhang,, J. Xu,: Vertical microgoblet resonator with high sensitivity fabricated by direct laser writing on a Si substrate. J. Appl. Phys. 121(6), 064502 (2017)
https://doi.org/10.1063/1.4975790
4 Y. Wu,, B. Duan,, C. Li,, D. Yang,: Multimode sensing based on optical microcavities. Front Optoelectron. 16(1), 29 (2023)
https://doi.org/10.1007/s12200-023-00084-1
5 F. Vanier,, F. Cote,, M.E. Amraoui,, Y. Messaddeq,, Y.A. Peter,, M. Rochette,: Low-threshold lasing at 1975 nm in thulium-doped tellurite glass microspheres. Opt. Lett. 40(22), 5227–5230 (2015)
https://doi.org/10.1364/OL.40.005227
6 Y.H. Lee,, H. Park,, I. Kim,, S.J. Park,, S. Rim,, B.J. Park,, M. Kim,, Y. Kim,, M.K. Kim,, W.S. Han,, H. Kim,, H. Park,, M. Choi,: Shape-tailored whispering gallery microcavity lasers designed by transformation optics. Photon. Res. 11(9), A35–A43 (2023)
https://doi.org/10.1364/PRJ.496471
7 F. Jiang,, L. Shao,, X. Zhang,, X. Yi,, J. Wiersig,, L. Wang,, Q. Gong,, M. Lončar,, L. Yang,, Y.F. Xiao,: Chaos-assisted broadband momentum transformation in optical microresonators. Science 358(6361), 344–347 (2017)
https://doi.org/10.1126/science.aao0763
8 S. Olivares,: Quantum optics in the phase space. Eur. Phys. J. Spec. Top. 203(1), 3–24 (2012)
https://doi.org/10.1140/epjst/e2012-01532-4
9 G. Lin,, Y.K. Chembo,: On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range. Opt. Express 23(2), 1594–1604 (2015)
https://doi.org/10.1364/OE.23.001594
10 C.G. Ma,, J.L. Xiao,, X. Xiao,, Y.D. Yang,, Y.Z. Huang,: Chaotic microlasers caused by internal mode interaction for random number generation. Light Sci. Appl. 11(1), 187 (2022)
https://doi.org/10.1038/s41377-022-00890-w
11 P.F. Liu,, H. Wen,, L.H. Ren,, L. Shi,, X. Zhang,: χ(2) nonlinear photonics in integrated microresonators. Front Optoelectron. 16(1), 18 (2023)
https://doi.org/10.1007/s12200-023-00073-4
12 J. Wiersig,: Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Phys. Rev. A 84(6), 063828 (2011)
https://doi.org/10.1103/PhysRevA.84.063828
13 S. Gwak,, H. Kim,, H.H. Yu,, J. Ryu,, C.M. Kim,, C.H. Yi,: Rayleigh scatterer-induced steady exceptional points of stable-island modes in a deformed optical microdisk. Opt. Lett. 46(12), 2980–2983 (2021)
https://doi.org/10.1364/OL.426470
14 J. Wiersig,, W. Kim,, M. Hentschel,: Asymmetric scattering and nonorthogonal mode patterns in optical microspirals. Phys. Rev. A 78(5), 053809 (2008)
https://doi.org/10.1103/PhysRevA.78.053809
15 Z.J. Wang,, X.B. Zhang,, Q. Zhang,, Y. Chen,, Y. Wang,, Y. Yu,, Y. Yang,, T. Wang,: Dominated mode switching and nanoparticle detection at exceptional points. J. Opt. Soc. Am. B 40(1), 108–114 (2022)
https://doi.org/10.1364/JOSAB.473350
16 L. Schawlow,, H. Townes,: Parity-time-symmetric microring lasers. Science 10, 588–694 (2014)
17 W. Wang,, S. Liu,, Z. Gu,, Y. Wang,: Chirality-enabled unidirectional light emission and nanoparticle detection in parity-time-symmetric microcavity. Phys. Rev. A (Coll. Park) 101(1), 013833 (2020)
https://doi.org/10.1103/PhysRevA.101.013833
18 H. Kwak,, Y. Shin,, S. Moon,, S.B. Lee,, J. Yang,, K. An,: Nonlinear resonance-assisted tunneling induced by microcavity deformation. Sci. Rep. 5(1), 9010 (2015)
https://doi.org/10.1038/srep09010
19 F. Fritzsch,, R. Ketzmerick,, A. Backer,: Resonance-assisted tunneling in deformed optical microdisks with a mixed phase space. Phys. Rev. E 100(4), 042219 (2019)
https://doi.org/10.1103/PhysRevE.100.042219
20 W. Chen,, Ş. Kaya Özdemir,, G. Zhao,, J. Wiersig,, L. Yang,: Exceptional points enhance sensing in an optical microcavity. Nature 548(7666), 192–196 (2017)
https://doi.org/10.1038/nature23281
21 Z.Z. Shen,, M. Tang,, L.Y. Chen,, Y.Z. Huang,: Unidirectional emission and nanoparticle detection in a deformed circular square resonator. Opt. Express 29(2), 1666–1677 (2021)
https://doi.org/10.1364/OE.412974
22 N. Zhang,, Z.Y. Gu,, S. Liu,, Y. Wang,, S. Wang,, Z. Duan,, W. Sun,, Y.F. Xiao,, S. Xiao,, Q. Song,: Far-field single nanoparticle detection and sizing. Optica 4(9), 1151–1156 (2017)
https://doi.org/10.1364/OPTICA.4.001151
23 J. Wiersig,: Chiral and nonorthogonal eigenstate pairs in open quantum systems with weak backscattering between counter-propagating traveling waves. Phys. Rev. A 89(1), 012119 (2014)
https://doi.org/10.1103/PhysRevA.89.012119
24 J. Peter,, M. Kailasnath,, V.R. Anand,, C.P.G. Vallabhan,, A. Mujeeb,: Control of directional emission of resonance modes in an asymmetric cylindrical microcavity. Opt. Laser Technol. 105, 1–3 (2018)
https://doi.org/10.1016/j.optlastec.2018.02.028
25 O. Alkhazragi,, M. Dong,, L. Chen,, D. Liang,, T.K. Ng,, J. Zhang,, H. Bagci,, B.S. Ooi,: Modifying the coherence of vertical-cavity surface-emitting lasers using chaotic cavities. Optica 10(2), 191–199 (2023)
https://doi.org/10.1364/OPTICA.475037
26 J. Wiersig,, M. Hentschel,: Combining directional light output and ultralow loss in deformed microdisks. Phys. Rev. Lett. 100(3), 033901 (2008)
https://doi.org/10.1103/PhysRevLett.100.033901
27 M. Kim,, K. Kwon,, J. Shim,, Y. Jung,, K. Yu,: Partially directional microdisk laser with two Rayleigh scatterers. Opt. Lett. 39(8), 2423–2426 (2014)
https://doi.org/10.1364/OL.39.002423
28 H. Yu,, H. Yi,, M. Kim,: Mechanism of Q-spoiling in deformed optical microcavities. Opt. Express 23(9), 11054–11062 (2015)
https://doi.org/10.1364/OE.23.011054
29 W. Wang,, Y.L. Chen,, Z. Shen,, K. Yang,, M.W. Sheng,, Y.Z. Hao,, Y. Yang,, J.L. Xiao,, Y.Z. Huang,: Unidirectional light emission in a deformed circular-side triangular microresonator. Opt. Express 31(9), 14560–14569 (2023)
https://doi.org/10.1364/OE.485160
30 A. Gao,, C. Yang,, L. Chen,, R. Zhang,, Q. Luo,, W. Wang,, Q. Cao,, Z. Hao,, F. Bo,, G. Zhang,, J. Xu,: Directional emission in X-cut lithium niobate microresonators without chaos dynamics. Photon. Res. 10(2), 401–406 (2022)
https://doi.org/10.1364/PRJ.447488
31 S. Liu,, J. Wiersig,, Z. Sun,, Y. Fan,, L. Ge,, J. Yang,, S. Xiao,, Q. Song,, H. Cao,: Transporting the optical chirality through the dynamical barriers in optical microcavities. Laser Photonics Rev. 12(10), 1800027 (2018)
https://doi.org/10.1002/lpor.201800027
32 H. Wen,, L.H. Ren,, L. Shi,, X. Zhang,: Parity-time symmetry in monolithically integrated graphene-assisted microresonators. Opt. Express 30(2), 2112–2121 (2022)
https://doi.org/10.1364/OE.448371
33 B. Peng,, S.K. Ozdemir,, M. Liertzer,, W. Chen,, J. Kramer,, H. Yılmaz,, J. Wiersig,, S. Rotter,, L. Yang,: Chiral modes and directional lasing at exceptional points. Proc. Natl. Acad. Sci. U.S.A. 113(25), 6845–6850 (2016)
https://doi.org/10.1073/pnas.1603318113
34 M. Kneissl,, M. Teepe,, N. Miyashita,, N. Johnson,, G. Chern,, R. Chang,: Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission. APL Photonics 84(14), 2485–2487 (2004)
https://doi.org/10.1063/1.1691494
35 L. Ge,, R. Sarma,, H. Cao,: Rotation-induced evolution of far-field emission patterns of deformed microdisk cavities. Optica 2(4), 323–328 (2015)
https://doi.org/10.1364/OPTICA.2.000323
36 J. Yang,, W. Saab,, Y. Liu,, P. Ben-Tzvi,: Reuleaux triangle-based two degrees of freedom bipedal robot. Robotics 10(4), 15 (2021)
https://doi.org/10.3390/robotics10040114
37 S. Gwak,, J. Ryu,, H. Kim,, H.H. Yu,, C.M. Kim,, C.H. Yi,: Farfield correlations verifying non-Hermitian degeneracy of optical modes. Phys. Rev. Lett. 129(7), 6 (2022)
https://doi.org/10.1103/PhysRevLett.129.074101
38 H. Cheng,, M. Dong,, Q. Tan,, L. Meng,, Y. Cai,, J. Jiang,, W. Yang,, H. Zhong,, L. Wang,: Broadband mid-IR antireflective Reuleaux-triangle-shaped hole array on germanium. Chin. Opt. Lett. 17(12), 4 (2019)
https://doi.org/10.3788/COL201917.122401
39 N.C. Frateschi,, A.F.J. Levi,: The spectrum of microdisk lasers. J. Appl. Phys. 80(2), 644–653 (1996)
https://doi.org/10.1063/1.362873
40 M. Hentschel,, H. Schomerus,, R. Schubert,: Husimi functions at dielectric interfaces: inside-outside duality for optical systems and beyond. Europhys. Lett. 62(5), 636–642 (2003)
https://doi.org/10.1209/epl/i2003-00421-1
[1] Zhilu YE, Minye YANG, Liang ZHU, Pai-Yen CHEN. PTX-symmetric metasurfaces for sensing applications[J]. Front. Optoelectron., 2021, 14(2): 211-220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed