Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2015, Vol. 8 Issue (1) : 57-61    https://doi.org/10.1007/s12200-013-0381-3
RESEARCH ARTICLE
Quantitative determination of n-heptane and n-octane using terahertz time-domain spectroscopy with chemometrics methods
Honglei ZHAN1,Fangli QIN1,2,Wujun JIN1,Li’na GE1,Honglan LIU1,Kun ZHAO1,2,*()
1. Key Laboratory of Oil and Gas Terahertz Spectroscopy and Photoelectric Detection, CPCIF, Beijing 100723, China
2. Laboratory of Optic Sensing and Detecting Technology, China University of Petroleum, Beijing 102249, China
 Download: PDF(673 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper introduces the terahertz time-domain spectroscopy (THz-TDS) used for the quantitative detection of n-heptane volume ratios in 41 n-heptane and n-octane mixtures with the concentration range of 0-100% at the intervals of 2.5%. Among 41 samples, 33 were used for calibration and the remaining 8 for validation. Models of chemometrics methods, including partial least squares (PLS) and back propagation-artificial neural network (BP-ANN), were built between the THz-TDS and the n-heptane percentage. To evaluate the quality of the built models, we calculated the correlation coefficient (R) and root-mean-square errors (RMSE) of calibration and validation models. R and RMSE of two methods were close to 1 and 0 within acceptable levels, respectively, demonstrating that the combination of THz-TDS and chemometrics methods is a potential and promising tool for further quantitative detection of n-alkanes.

Keywords partial least squares (PLS)      terahertz time-domain spectroscopy (THz-TDS)      n-heptane      n-octane      back propagation-artificial neural network (BP-ANN)     
Corresponding Author(s): Kun ZHAO   
Online First Date: 17 December 2013    Issue Date: 13 February 2015
 Cite this article:   
Honglei ZHAN,Fangli QIN,Wujun JIN, et al. Quantitative determination of n-heptane and n-octane using terahertz time-domain spectroscopy with chemometrics methods[J]. Front. Optoelectron., 2015, 8(1): 57-61.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-013-0381-3
https://academic.hep.com.cn/foe/EN/Y2015/V8/I1/57
Fig.1  Chart of the sample held in a quartz cell
Fig.2  THz-TDS of 41 n-heptane and n-octane mixtures at the intervals of 2.5%
Fig.3  Time delay versus n-heptane percentage of 20 selected samples
Fig.4  THz-FDS of 41 n-heptane and n-octane mixtures at the intervals of 2.5%
Fig.5  Predicted n-heptane percentage versus actual n-heptane percentage from PLS models
Fig.6  Predicted n-heptane percentage versus actual n-heptane percentage from BP-ANN models
PLS BP-ANN
calibration validation calibration validation
R 0.9973 0.9764 0.9999 0.9716
RMSE/% 2.217 6.714 0.0003 6.21
Tab.1  Errors of calibration and validation of two methods
1 Yamaguchi M, Serafin S V, Morton T H, Chronister E L. Infrared absorption studies of n-heptane under high pressure. Journal of Physical Chemistry B, 2003, 107(12): 2815–2821
https://doi.org/10.1021/jp0221439
2 Brunel L C, Dows D A. Raman spectra of n-alkane crystals: lattice vibration of n-hexane, n-heptane and n-octane. Spectrochimica Acta Part A: Molecular Spectroscopy, 1974, 30(4): 929–940
https://doi.org/10.1016/0584-8539(74)80008-5
3 Snyder R G, Kim Y. Conformation and low-frequency isotropic Raman spectra of the liquid n-alkanes C4-C9. Journal of Physical Chemistry, 1991, 95(2): 602–610
https://doi.org/10.1021/j100155a022
4 Cameron D G, Hsi S C, Umemura J, Mantsch H H. Solvent induced frequency shifts of the C-H stretching bands of n-octane. A Fourier transform infrared study. Canadian Journal of Chemistry, 1981, 59(9): 1357–1360
https://doi.org/10.1139/v81-199
5 Zhao H, Zhao K, Bao R M. Fuel property determination of biodiesel-diesel blends by terahertz spectrum, Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33(5): 522–528
https://doi.org/10.1007/s10762-012-9886-x
6 Dragoman D, Dragoman M. Terahertz fields and applications. Progress in Quantum Electronics, 2004, 28(1): 1–66
https://doi.org/10.1016/S0079-6727(03)00058-2
7 Watanabe Y, Kawase K, Ikari T, Ito H, Ishikaw Y, Minamide H. Component analysis of chemical mixtures using terahertz spectroscopic imaging. Optics Communications, 2004, 234(1–6): 125–129
8 Tian L, Zhou Q L, Jin B, Zhao K, Zhao S Q, Shi Y L, Zhang C L. Optical property and spectroscopy studies on the selected lubricating oil in the terahertz range. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52(12): 1938–1943
https://doi.org/10.1007/s11433-009-0310-z
9 Zhao H, Zhao K, Tian L, Zhao S Q, Zhou Q L, Shi Y L, Zhao D M, Zhang C L. Spectrum features of commercial derv fuel oils in terahertz region. Science China Physics, Mechanics & Astronomy, 2012, 55(2): 195–198
https://doi.org/10.1007/s11433-011-4597-1
10 Bao R M, Wu S X, Zhao K, Zheng L J, Xu C H. Applying terahertz time-domain spectroscopy to probe the evolution of kerogen in close pyrolysis systems. Science China Physics, Mechanics & Astronomy, 2013, 56(8): 1603–1605
https://doi.org/10.1007/s11433-013-5085-6
11 Wold S, Sj?str?m M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 2001, 58(2): 109–130
https://doi.org/10.1016/S0169-7439(01)00155-1
12 Cai C B, Yang H W, Wang B, Tao Y Y, Wen M Q, Xu L. Using near-infrared process analysis to study gas–solid adsorption process as well as its data treatment based on artificial neural network and partial least squares. Vibrational Spectroscopy, 2011, 56(2): 202–209
https://doi.org/10.1016/j.vibspec.2011.02.009
13 Laib J P, Mittleman D M. Temperature-dependent terahertz spectroscopy of liquid n-alkanes. Journal of Infrared, Millimeter, and Terahertz Waves, 2010, 31(9): 1015–1021
https://doi.org/10.1007/s10762-010-9678-0
14 Hua Y F, Zhang H J. Qualitative and quantitative detection of pesticides with terahertz time-domain spectroscopy. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(7): 2064–2070
https://doi.org/10.1109/TMTT.2010.2050184
15 Hua Y F, Zhang H J, Zhou H L. Quantitative determination of cyfluthrin in n-hexane by terahertz time-domain spectroscopy with chemometrics methods. IEEE Transactions on Instrumentation and Measurement, 2010, 59(5): 1414–1423
https://doi.org/10.1109/TIM.2010.2041020
16 Wu H Q, Heilweil E J, Hussain A S, Khan M A. Process analytical technology (PAT): quantification approaches in terahertz spectroscopy for pharmaceutical application. Journal of Pharmaceutical Sciences, 2008, 97(2): 970–984
https://doi.org/10.1002/jps.21004 pmid: 17722101
[1] Chenghong WU, Xinyang MIAO, Kun ZHAO. Identifying PM2.5 samples collected in different environment by using terahertz time-domain spectroscopy[J]. Front. Optoelectron., 2018, 11(3): 256-260.
[2] Qian LI,Honglei ZHAN,Fangli QIN,Wujun JIN,Honglan LIU,Kun ZHAO. Detecting NO--3 concentration in nitrate solutions using terahertz time-domain spectroscopy[J]. Front. Optoelectron., 2015, 8(1): 62-67.
[3] Hui ZHAO, Kun ZHAO, Lu TIAN, Qing MIAO, Hao NI. Optical property of biodiesel and its base stock in terahertz region[J]. Front Optoelec, 2012, 5(2): 214-217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed