Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci Chin    2009, Vol. 3 Issue (1) : 33-37    https://doi.org/10.1007/s11706-009-0014-3
RESEARCH ARTICLE
Thermodynamic re-assessment of the Fe-Al-C system based on the Fe-rich experimental data
Lin LI1(), Shuigen HUANG2, Li WANG3, Yan-lin HE1, Jef VLEUGELS2, Omer VAN DER BIEST2
1. School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China; 2. Department of Metallurgical and Engineering (MTM), Katholieke Universiteit Leuven, Heverlee, B-3001, Belgium; 3. Technology Center, Steel Products Institute, Baosteel, Shanghai 201900, China
 Download: PDF(153 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The influence of C and Al content on phase transformation temperatures, i.e., the A1 and A3 of Fe-rich alloys is investigated by dilatometric analysis. With the new set of experimental data, an updated thermodynamic description of the Fe-Al-C system is presented, by using the thermodynamic data of the Fe-C, Fe-Al and Al-C systems, as well as the parameters for the Fe-Al-C ternary system optimized in this study. The good compatibility of the thermodynamic parameters with experimental data is demonstrated by several calculated vertical sections. A well reproduced vertical section of the Fe-Mn-Si-Al-C system is also presented according to the thermodynamic description of the lower order systems.

Keywords iron-aluminum-carbon      TRIP steel      phase diagram      thermal analysis     
Corresponding Author(s): LI Lin,Email:liling@shu.edu.cn   
Issue Date: 05 March 2009
 Cite this article:   
Lin LI,Shuigen HUANG,Li WANG, et al. Thermodynamic re-assessment of the Fe-Al-C system based on the Fe-rich experimental data[J]. Front Mater Sci Chin, 2009, 3(1): 33-37.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-009-0014-3
https://academic.hep.com.cn/foms/EN/Y2009/V3/I1/33
AlloyComposition /wt.%Experimental T /°CCalculated T /°C
CAlFeA1A3A1A3
C10.151.5798.287319877291006
C20.251.5198.24708935728918
C30.411.4798.12739892727850
C40.541.5097.96734861728823
C50.751.5397.72732810729796
C60.761.5497.70737788729797
C70.911.4297.67726827726769
C81.011.5497.45734822729793
Al10.190.9198.90735900726889
Al20.201.1398.67745938725900
Al30.211.3098.49745953726920
Tab.1  Compositions of the Fe-rich alloys and the transformation temperatures of the alloys obtained by DIL analysis and thermodynamic calculation
Fig.1  Dilatometric curve and the critical transformation temperatures
Fig.2  Phase diagrams of Fe-C, Fe-Al, and Al-C
Fig.3  Vertical sections of the Fe-Al-C system with a constant Al content of 1.5 wt.%: before the optimization; after the optimization
Fig.4  Optimized vertical sections of the Fe-Al-C system with a constant C content of 0.2 wt.%, and with C contents of 0.05 wt.%, 0.10 wt.%, 0.20 wt.% and 0.23 wt.%
Fig.5  Extrapolated vertical section of the Fe-Mn-Si-Al-C system with 1.60 wt.% Mn, 0.37 wt.% Si, and 1.31 wt.% Al
1 Mahieu J, de Cooman B C, Maki J, . Hot-dip galvanizing of Al alloyed TRIP steels. Iron and Steelmaker , 2002, 29(6): 29-34
2 Takada Y, Suehiro M, Senuma T. EP 1 354 970 A1, 2003
3 Li L, de Cooman B C, Liu R D, . Design of TRIP steel with high welding and galvanizing performance in light of thermodynamics and kinetics. Journal of Iron and Steel Research, International , 2007, 14(6): 37-41
doi: 10.1016/S1006-706X(07)60087-9
4 Gr?ssel O, Krüger L, Frommeyer G, . High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application. International Journal of Plasticity , 2000, 16(10–11): 1391-1409
doi: 10.1016/S0749-6419(00)00015-2
5 van der Zwaag S, Zhao L, Kruijver S O, . Thermal and mechanical stability of retained austenite in aluminum-containing multiphase TRIP steels. ISIJ International , 2002, 42(12): 1565-1570
doi: 10.2355/isijinternational.42.1565
6 Suh D W, Park S J, Oh C S, . Influence of partial replacement of Si by Al on the change of phase fraction during heat treatment of TRIP steels. Scripta Materialia , 2007, 57(12): 1097-1100
doi: 10.1016/j.scriptamat.2007.08.022
7 Dinsdale A T. SGTE data for pure elements. CALPHAD , 1991, 15(4): 317-425
doi: 10.1016/0364-5916(91)90030-N
8 Redlich O, Kister A T. Algebraic representation of thermodynamic properties and the classification of solutions. Industrial & Engineering Chemistry , 1948, 40: 345-348
doi: 10.1021/ie50458a036
9 Sundman B, ?gren J. A regular solution model for phases with several components and sublattices, suitable for computer applications. Journal of Physics and Chemistry of Solids , 1981, 42(4): 297-301
doi: 10.1016/0022-3697(81)90144-X
10 Kumar K C H, Raghavan V. A thermodynamic analysis of the Al-C-Fe system. Journal of Phase Equilibria , 1991, 12(3): 275-286
doi: 10.1007/BF02649916
11 Gustafson P. A thermodynamic evaluation of the Fe-C system. Scandinavian Journal of Metallurgy , 1985, 14(5): 259-267
12 Palm M, Inden G. Experimental-determination of phase-equilibria in the Fe-Al-C system. Intermetallics , 1995, 3(6): 443-454
doi: 10.1016/0966-9795(95)00003-H
13 Ohtani H, Yamano M, Hasebe M. Thermodynamic analysis of the Fe-Al-C ternary system by incorporating ab initio energetic calculations into the CALPHAD approach. ISIJ International , 2004, 44(10): 1738-1747
doi: 10.2355/isijinternational.44.1738
14 Sundman B. The Thermo-Calc databank system. CALPHAD , 1985, 9(4): 153-190
doi: 10.1016/0364-5916(85)90021-5
[1] Bing TENG,Weijin KONG,Ke FENG,Fei YOU,Lifeng CAO,Degao ZHONG,Lun HAO,Qing SUN,Sander van SMAALEN,Wenhui GONG. Synthesis, crystal structure and thermal analysis of a new stilbazolium salt crystal[J]. Front. Mater. Sci., 2015, 9(2): 147-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed