Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2010, Vol. 4 Issue (2) : 189-192    https://doi.org/10.1007/s11706-010-0017-0
Research articles
Investigation on the stability of Li 5 La 3 Ta 2 O 12 lithium ionic conductors in humid environment
Wei-Guo WANG1,Xian-Ping WANG2,Yun-Xia GAO2,Jun-Feng YANG2,Qian-Feng FANG2,
1.Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China;College of Physics and Electronic Information, Yan’an University, Yan’an 716000, China; 2.Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China;
 Download: PDF(209 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In this paper, the stability in humid air of Li5La3Ta2O12 lithium ionic conductors synthesized by conventional solid-state reaction was investigated by internal friction, conductivity, weight variation, X-ray diffraction, and thermogravimetric analysis methods. It was found that when the Li5La3Ta2O12 samples were aged in open air at room temperature, the internal friction peaks associated with the short-distance diffusion of lithium vacancies gradually shift toward higher temperature and increase in height, while the weight of the sample increases and impurity phases of LiOH·H2O appear. These results reveal that the Li5La3Ta2O12 compounds are unstable against moisture in open air at room temperature. It was suggested that the protons from the moisture substitute the lithium ions in Li5La3Ta2O12 samples to form Li2O and new protonic derivatives, Li5−xLa3Ta2O12−x(OH)x (0<x<2.15), and the resultant Li2O may react further with water to form LiOH·H2O.
Keywords lithium ionic conductor      Li5La3Ta2O12      internal friction (IF)      
Issue Date: 05 June 2010
 Cite this article:   
Wei-Guo WANG,Yun-Xia GAO,Xian-Ping WANG, et al. Investigation on the stability of Li 5 La 3 Ta 2 O 12 lithium ionic conductors in humid environment[J]. Front. Mater. Sci., 2010, 4(2): 189-192.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-010-0017-0
https://academic.hep.com.cn/foms/EN/Y2010/V4/I2/189
Thangadurai V, Kaack H, Weppner W. Novel fast lithium ion conduction ingarnet-type Li5La3M2O12 (M=Nb, Ta). Journal of the American Ceramic Society, 2003, 86(3): 437―440

doi: 10.1111/j.1151-2916.2003.tb03318.x
Thangadurai V, Weppner W. Li6ALa2Nb2O12 (A=Ca, Sr, Ba): a new class of fast lithiumionconductors with garnet-like structure. Journal of the American Ceramic Society, 2005, 88(2): 411―418

doi: 10.1111/j.1551-2916.2005.00060.x
Thangadurai V, Weppner W. Li6ALa2Ta2O12 (A=Sr, Ba): novel garnet-like oxides forfast lithium ion conduction. Advanced FunctionalMaterials, 2005, 15(1): 107―112

doi: 10.1002/adfm.200400044
Thangadurai V, Weppner W. Effectof sintering on the ionic conductivity of garnet-related structureLi5La3Nb2O12 and In- and K-doped Li5La3Nb2O12. Journal of Solid State Chemistry, 2006, 179(4): 974―984

doi: 10.1016/j.jssc.2005.12.025
Thangadurai V, Weppner W. Investigationson electrical conductivity and chemical compatibility between fastlithium ion conducting garnet-like Li6BaLa2Ta2O12 and lithium battery cathodes. Journalof Power Sources, 2005, 142(1―2): 339―344

doi: 10.1016/j.jpowsour.2004.11.001
O’Callaghan M P, Powell A S, Timan J J, et al. Switching on fastlithium ion conductivity in garnets: the structure and transport propertiesof Li3+xNd3Te2−xSbxO12.Chemistry of Materials, 2008, 20(6): 2360―2369

doi: 10.1021/cm703677q
O’Callaghan M P, Cussen E J. The structure of the lithium-rich garnets Li6SrLa2M2O12 and Li6.4Sr1.4La1.6M2O12 (M=Sb, Ta). Solid StateSciences, 2008, 10(4): 390―395

doi: 10.1016/j.solidstatesciences.2007.11.036
Wang X P, Wang W G, Gao Y X, et al. Low frequency internal frictionstudy of lithium ion conductor Li5La3Ta2O12. Materials Science and Engineering A, 2009, 521―522: 87―89

doi: 10.1016/j.msea.2008.09.113
Fang Q F, Wang X P, Zhang G G, et al. Evolution of internal frictionand dielectric relaxation peaks in La2Mo2O9-based oxide-ion conductorsassessed by a nonlinear peak-fitting method. Physica Status Solidi (a), 2005, 202(6): 1041―1047

doi: 10.1002/pssa.200420023
Zou Y, Petric A. Preparationand properties of yttrium-doped lithium zirconate. Journal of the Electrochemical Society, 1993, 140(5): 1388―1392

doi: 10.1149/1.2221565
Bhuvanesh N S P, Bohnke O, Duroy H, et al. Topotactic H+/Li+ ion exchange on La2/3−xLi3xTiO3: new metastable perovskite phases La2/3−xTiO3−3x(OH)3x and La2/3−xTiO3−3x/2 obtained by further dehydration. MaterialsResearch Bulletin, 1998, 33(11): 1681―1691

doi: 10.1016/S0025-5408(98)00170-6
Cussen E J. The structure of lithium garnets: cation disorder andclustering in a new family of fast Li+ conductors. Chemical Communications (Cambridge), 2006, (4): 412―413

doi: 10.1039/b514640b
Stramare S, Thangadurai V, Weppner W. Lithium lanthanum titanates:a review. Chemistry of Materials, 2003, 15(21): 3974―3990

doi: 10.1021/cm0300516
[1] Yun-Xia GAO, Xian-Ping WANG, Qin-Xing SUN, Zhong ZHUANG, Qian-Feng FANG. Electrical properties of garnet-like lithium ionic conductors Li5+xSrxLa3--xBi2O12 fabricated by spark plasma sintering method[J]. Front Mater Sci, 2012, 6(3): 216-224.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed