Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2012, Vol. 6 Issue (3) : 216-224    https://doi.org/10.1007/s11706-012-0172-6
RESEARCH ARTICLE
Electrical properties of garnet-like lithium ionic conductors Li5+xSrxLa3--xBi2O12 fabricated by spark plasma sintering method
Yun-Xia GAO, Xian-Ping WANG, Qin-Xing SUN, Zhong ZHUANG, Qian-Feng FANG()
Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
 Download: PDF(435 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A typical approach involving Pechini method and spark plasma sintering (SPS) method was presented for the preparation of high density Li5+xSrxLa3--xBi2O12 (x = 0, 1) ceramics. Phase formation, microstructure, grain size and electrical properties of the specimens were examined using XRD, SEM and alternating current impedance spectroscopy (ACIS). Dense Li5La3Bi2O12 and Li6SrLa2Bi2O12 ceramics with pure garnet-like phase, relative density of 97% and average grain size of about 5 μm were fabricated using this approach. The total conductivities at 298 K of Li5La3Bi2O12 and Li6SrLa2Bi2O12 ceramics prepared by the SPS method are 5.1×10-5 and 6.8×10-5 S/cm, respectively, 2 times higher than that of samples prepared by the conventional sintering method.

Keywords lithium ionic conductor      Li5+xSrxLa3--xBi2O12      Pechini method      spark plasma sintering (SPS)      ionic conductivity     
Corresponding Author(s): FANG Qian-Feng,Email:qffang@issp.ac.cn   
Issue Date: 05 September 2012
 Cite this article:   
Yun-Xia GAO,Xian-Ping WANG,Qin-Xing SUN, et al. Electrical properties of garnet-like lithium ionic conductors Li5+xSrxLa3--xBi2O12 fabricated by spark plasma sintering method[J]. Front Mater Sci, 2012, 6(3): 216-224.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-012-0172-6
https://academic.hep.com.cn/foms/EN/Y2012/V6/I3/216
Fig.1  XRD patterns of LiSrLaBiO ( = 0, 1) powder samples (designated as P) calcined at 923 K for 5 h by the Pechini method and ceramic samples (designated as S) sintered at 923 K for 5 min by the SPS method using the sol–gel prepared powders. Arrows indicate impurity phase contribution of BiLaO.
Fig.2  Observed and calculated powder XRD patterns and their difference of LiLaBiO and LiSrLaBiO powders from pellets prepared by the SPS method.
CompositionLattice parameter/?Rpa)Rwpb)
Li5La3Bi2O1213.06(6)13.918.7
Li6SrLa2Bi2O1213.09(2)11.915.8
Tab.1  The relative refinement parameters from powder XRD pattern matching for LiSrLaBiO ( = 0, 1) garnet-like phase
Fig.3  SEM images of pellets sintered at 923 K for 5 min by the SPS method: LiLaBiO (low magnification); LiLaBiO (high magnification); LiSrLaBiO (low magnification); LiSrLaBiO (high magnification).
Fig.4  EDS spectra of LiLaBiO and LiSrLaBiO specimens sintered at 923 K for 5 min by the SPS method, showing peaks for La, Bi, Sr and O.
Fig.5  Atom maps of LiLaBiO and LiSrLaBiO specimens sintered at 923 K for 5 min by the SPS method, showing the presence of elements La, Bi, Sr and O.
Fig.6  Impedance spectra collected at 298, 313, and 323 K for ceramic samples of LiLaBiO and LiSrLaBiO prepared by the SPS method. The fitting results of impedance spectra were collected at 298 K.
Fig.7  Relationships between ln() and 1/ involving the total conductivity and temperature of bulk LiLaBiO and LiSrLaBiO ceramic samples synthesized by the SPS method.
1 Robertson A D, West A R, Ritchie A G. Review of crystalline lithium-ion conductors suitable for high temperature battery applications. Solid State Ionics , 1997, 104(1-2): 1-11
2 Julien C, Nazri G A. Solid State Batteries: Materials Design and Optimization. Boston: Kluwer Academic Publications, 1994
3 Takahashi T, ed. High Conductivity Solid Ionic Conductors: Recent Trends and Applications. Singapore: World Scientific , 1989, 201
4 Alpen U V, Rabenau A, Talat G H. Ionic conductivity in Li3N single crystals. Applied Physics Letters , 1977, 30(12): 621-623
5 Bohnke O, Bohnke C, Fourquet J L. Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate. Solid State Ionics , 1996, 91(1-2): 21-31
6 Thangadurai V, Weppner W. Recent progress in solid oxide and lithium ion conducting electrolytes research. Ionics , 2006, 12(1): 81-92
7 Aono H, Imanaka H, Adachi G Y. High Li+ conducting ceramics. Accounts of Chemical Research , 1994, 27(9): 265-270
8 Adachi G Y, Imanaka N, Aono H. Fast Li+ conducting ceramic electrolytes. Advanced Materials , 1996, 8(2): 127-135
9 Mizuno F, Hayashi A, Tadanaga K, . High lithium ion conducting glass-ceramics in the system Li2S–P2S5. Solid State Ionics , 2006, 177(26-32): 2721-2725
10 Bates J B, Dudney N J, Neudecker B, . Thin-film lithium and lithium-ion batteries. Solid State Ionics , 2000, 135(1-4): 33-45
11 Thangadurai V, Kaack H, Weppner W. Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M= Nb, Ta). Journal of the American Ceramic Society , 2003, 86(3): 437-440
12 Thangadurai V, Weppner W. Li6ALa2Ta2O12 (A= Sr, Ba): Novel garnet-like oxides for fast lithium ion conduction. Advanced Functional Materials , 2005, 15(1): 107-112
13 Thangadurai V, Adams S, Weppner W. Crystal structure revision and identification of Li+ ion migration pathways in the garnet-like Li5La3M2O12 (M= Nb, Ta) oxides. Chemistry of Materials , 2004, 16(16): 2998-3006
14 Thangadurai V, Weppner W. Li6ALa2Nb2O12 (A= Ca, Sr, Ba): A new class of fast lithium ion conductors with garnet-like structure. Journal of the American Ceramic Society , 2005, 88(2): 411-418
15 Thangadurai V, Weppner W. Effect of sintering on the ionic conductivity of garnet-related structure Li5La3Nb2O12 and In- and K-doped Li5La3Nb2O12. Journal of Solid State Chemistry , 2006, 179(4): 974-984
16 Murugan R, Weppner W, Schmid-Beurmann P, . Structure and lithium ion conductivity of bismuth containing lithium garnets Li5La3Bi2O12 and Li6SrLa2Bi2O12. Materials Science and Engineering B , 2007, 143(1-3): 14-20
17 Thangadurai V, Weppner W. Investigations on electrical conductivity and chemical compatibility between fast lithium ion conducting garnet-like Li6BaLa2Ta2O12 and lithium battery cathodes. Journal of Power Sources , 2005, 142(1-2): 339-344
18 Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angewandte Chemie International Edition , 2007, 46(41): 7778-7781
19 Ohta S, Kobayashi T, Asaoka T. High lithium ionic conductivity in the garnet-type oxide Li7-XLa3(Zr2-X, NbX)O12 (X = 0-2). Journal of Power Sources , 2011, 196(6): 3342-3345
20 Bohnke Cl, Regrag B, Le Berre F, . Comparison of pH sensitivity of lithium lanthanum titanate obtained by sol–gel synthesis and solid state chemistry. Solid State Ionics , 2005, 176(1-2): 73-80
21 Vijayakumar M, Pham Q N, Bohnke C. Lithium lanthanum titanate ceramic as sensitive material for pH sensor: Influence of synthesis methods and powder grains size. Journal of the European Ceramic Society , 2005, 25(12): 2973-2976
22 Vijayakumar M, Inaguma Y, Mashiko W, . Synthesis of fine powders of Li3xLa2/3-xTiO3 perovskite by a polymerizable precursor method. Chemistry of Materials , 2004, 16(14): 2719-2724
23 Gao Y X, Wang X P, Wang W G, . Synthesis, ionic conductivity, and chemical compatibility of garnet-like lithium ionic conductors Li5La3Bi2O12. Solid State Ionics , 2010, 181(31-32): 1415-1419
24 Munir Z A, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. Journal of Materials Science , 2006, 41(3): 763-777
25 Anselmi-Tamburini U, Garay J E, Munir Z A, . Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part I. Densification studies. Journal of Materials Research , 2004, 19(11): 3255-3262
26 Harimkar S P, Borkar T, Singh A. Spark plasma sintering of amorphous-crystalline laminated composites. Materials Science and Engineering A , 2011, 528(3): 1901-1905
27 Wen Z Y, Xu X X, Li J X. Preparation, microstructure and electrical properties of Li1.4Al0.4Ti1.6(PO4)3 nanoceramics. Journal of Electroceramics , 2009, 22(1-3): 342-345
28 Xu X X, Wen Z Y, Yang X L, . Dense nanostructured solid electrolyte with high Li-ion conductivity by spark plasma sintering technique. Materials Research Bulletin , 2008, 43(8-9): 2334-2341
29 Kobayashi Y, Takeuchi T, Tabuchi M, . Densification of LiTi2(PO4)3-based solid electrolytes by spark-plasma-sintering. Journal of Power Sources , 1999, 81-82: 853-858
30 Chang C M, Hong S H, Park H M. Spark plasma sintering of Al substituted LiHf2(PO4)3 solid electrolytes. Solid State Ionics , 2005, 176(35-36): 2583-2587
31 Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter , 1993, 192(1-2): 55-69
32 Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography , 1976, 32(5): 751-767
33 Murugan R, Weppner W, Schmid-Beurmann P, . Structure and lithium ion conductivity of garnet-like Li5La3Sb2O12 and Li6SrLa2Sb2O12. Materials Research Bulletin , 2008, 43(10): 2579-2591
34 Wang X P, Corbel G, Kodjikian S, . Isothermal kinetic of phase transformation and mixed electrical conductivity in Bi3NbO7. Journal of Solid State Chemistry , 2006, 179(11): 3338-3346
35 Murugan R, Thangadurai V, Weppner W. Effect of lithium ion content on the lithium ion conductivity of the garnet-like structure Li5+xBaLa2Ta2O11.5+0.5x (x = 0-2). Applied Physics A: Materials Science & Processing , 2008, 91(4): 615-620
[1] Yu XIA,Liang MA,Hui LU,Xian-Ping WANG,Yun-Xia GAO,Wang LIU,Zong ZHUANG,Li-Jun GUO,Qian-Feng FANG. Preparation and enhancement of ionic conductivity in Al-added garnet-like Li6.8La3Zr1.8Bi0.2O12 lithium ionic electrolyte[J]. Front. Mater. Sci., 2015, 9(4): 366-372.
[2] Yan JIANG,Jun-Feng YANG,Qian-Feng FANG. Effect of chromium content on microstructure and corrosion behavior of W--Cr--C coatings prepared on tungsten substrate[J]. Front. Mater. Sci., 2015, 9(1): 77-84.
[3] Francisco LóPEZ MORALES, Teresa ZAYAS, Oscar E. CONTRERAS, Leonardo SALGADO. Effect of Sn precursor on the synthesis of SnO2 and Sb-doped SnO2 particles via polymeric precursor method[J]. Front Mater Sci, 2013, 7(4): 387-395.
[4] Wei-Guo WANG, Xian-Ping WANG, Yun-Xia GAO, Jun-Feng YANG, Qian-Feng FANG, . Investigation on the stability of Li 5 La 3 Ta 2 O 12 lithium ionic conductors in humid environment[J]. Front. Mater. Sci., 2010, 4(2): 189-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed