Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2015, Vol. 9 Issue (4) : 366-372    https://doi.org/10.1007/s11706-015-0308-6
RESEARCH ARTICLE
Preparation and enhancement of ionic conductivity in Al-added garnet-like Li6.8La3Zr1.8Bi0.2O12 lithium ionic electrolyte
Yu XIA,Liang MA,Hui LU,Xian-Ping WANG(),Yun-Xia GAO,Wang LIU,Zong ZHUANG,Li-Jun GUO,Qian-Feng FANG
Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
 Download: PDF(688 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Garnet-like Li6.8La3Zr1.8Bi0.2O12 (LLZBO) + x mol.% Al2O3 (x = 0, 1.25, 2.50) lithium ionic electrolytes were prepared by conventional solid state reaction method under two different sintering temperatures of 1000°C and 1100°C. XPS, induced coupled plasma optical emission spectrometer (ICP-OES), XRD and AC impedance spectroscopy were applied to investigate the bismuth valance, lithium concentration, phase structure and lithium ionic conductivity, respectively. Electrical measurement demonstrated that ionic conductivity of Al-added LLZBO compounds could be obviously improved when the sample sintering temperature increased from 1000°C to 1100°C. The highest ionic conductivity 6.3×10−5 S/cm was obtained in the LLZBO−1.25%Al sample sintered at 1100°C, in consistent with the lowest activation energy 0.45 eV for the lithium ion migration. The mechanism related with good ionic conductivity in the Al-added LLZBO sample was attributed to the lattice distortion induced by the partial Al substitution at Zr sites, which is helpful to improve the migration ability of Li ions in lattice.

Keywords garnet lithium electrolyte      cubic Li7La3Zr2O12      AC impedance      ionic conductivity      activation energy     
Corresponding Author(s): Xian-Ping WANG   
Online First Date: 11 September 2015    Issue Date: 12 November 2015
 Cite this article:   
Yu XIA,Liang MA,Hui LU, et al. Preparation and enhancement of ionic conductivity in Al-added garnet-like Li6.8La3Zr1.8Bi0.2O12 lithium ionic electrolyte[J]. Front. Mater. Sci., 2015, 9(4): 366-372.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-015-0308-6
https://academic.hep.com.cn/foms/EN/Y2015/V9/I4/366
Fig.1  XPS of Bi 4f for a Li7−xLa3Zr2−xBixO12 compound.
Fig.2  (a) Results of XRD Rietveld refinement for the Bi-stabilized cubic Li6.7La3Zr1.7Bi0.3O12 sample using a space group Ia-3d. (b) Variation of the cell parameter of Bi-stabilized Li7−xLa3Zr2−xBixO12 samples as a function of the Bi content.
Fig.3  Powder XRD patterns of LLZBO and Al-added LLZBO samples sintered at 950°C for 6 h: LLZBO (a); LLZBO–1.25%Al (b); LLZBO–2.5%Al (c).
Sample Li content /wt.%
LLZBO 4.61
LLZBO–1.25%Al 4.52
LLZBO–2.5%Al 4.98
Tab.1  Li concentration in LLZBO and Al-added LLZBO samples sintered at 950°C determined by ICP analysis
Fig.4  Impedance plots of LLZBO and Al-added LLZBO pellets measured in air at room temperature: (a) sintered at 1000°C for 9 h; (b) sintered at 1100°C for 9 h. Insert: Local enlarged high-frequency region of the same impedance spectra.
Sample RT conductivity /(S·cm−1) Activation energy /eV
1000°C/9 h 1100°C/9 h 1000°C/9 h 1100°C/9 h
LLZBO 8.1×10−6 2.6×10−5 0.51 0.51
LLZBO–1.25%Al 5.04×10−6 6.31×10−5 0.54 0.45
LLZBO–2.5%Al 3.6×10−6 4.3×10−5 0.55 0.49
Tab.2  RT conductivity and Li migration activation energy for LLZBO and Al-added LLZBO samples sintered at 1000°C and 1100°C, respectively
Fig.5  Arrhenius plots of LLZBO and Al-added LLZBO pellets measured in the temperature range from 30°C to 110°C: (a) sintered at 1000°C for 9 h; (b) sintered at 1100°C for 9 h.
1 Thangadurai  V, Narayanan  S, Pinzaru  D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chemical Society Reviews, 2014, 43(13): 4714–4727
2 Zhu  J, Xu  Z, Lu  B G. Ultrafine nanoparticles decorated NiCo2O4 nanotubes as anode material for high-performance supercapacitor and lithium-ion battery applications. Nano Energy, 2014, 7: 114–123
3 Zhu  J, Chen  L B, Xu  Z,  Electrospinning preparation of ultra-long aligned nanofibers thin films for high performance fully flexible lithium-ion batteries. Nano Energy, 2015, 12: 339–346
4 Thangadurai  V, Weppner  W. Effect of sintering on the ionic conductivity of garnet-related structure Li5La3Nb2O12 and In- and K-doped Li5La3Nb2O12. Journal of Solid State Chemistry, 2006, 179(4): 974–984
5 Murugan  R, Thangadurai  V, Weppner  W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angewandte Chemie International Edition, 2007, 46(41): 7778–7781
6 Thangadurai  V, Kaack  H, Weppner  W. Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M=Nb, Ta). Journal of the American Ceramic Society, 2003, 86(3): 437–440
7 Awaka  J, Kijima  N, Hayakawa  H,  Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. Journal of Solid State Chemistry, 2009, 182(8): 2046–2052
8 Rangasamy  E, Wolfenstine  J, Sakamoto  J. The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ionics, 2012, 206: 28–32
9 Hubaud  A A, Schroeder  D J, Key  B,  Low temperature stabilization of cubic (Li7−xAlx/3)La3Zr2O12: role of aluminum during formation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(31): 8813–8818
10 Wang  X P, Xia  Y, Hu  J,  Phase transition and conductivity improvement of tetragonal fast lithium ionic electrolyte Li7La3Zr2O12. Solid State Ionics, 2013, 253: 137–142
11 Lee  J M, Kim  T, Baek  S W,  High lithium ion conductivity of Li7La3Zr2O12 synthesized by solid state reaction. Solid State Ionics, 2014, 258: 13–17
12 Ahn  J H, Park  S Y, Lee  J M,  Local impedance spectroscopic and microstructural analyses of Al-in-diffused Li7La3Zr2O12. Journal of Power Sources, 2014, 254: 287–292
13 Düvel  A, Kuhn  A, Robben  L,  Mechanosynthesis of solid electrolytes: preparation, characterization, and Li ion transport properties of garnet-type Al-doped Li7La3Zr2O12 crystallizing with cubic symmetry. Journal of Physical Chemistry C, 2012, 116(29): 15192–15202
14 Raskovalov  A A, Il’ina  E A, Antonov  B D. Structure and transport properties of Li7La3Zr2−0.75xAlxO12 superionic solid electrolytes. Journal of Power Sources, 2013, 238: 48–52
15 He  L X, Yoo  H I. Effect of B-site ion (M) substitution on the ionic conductivity of (Li3xLa2/3−x)1+y/2(MyTi1−y)O3 (M=Al, Cr). Electrochimica Acta, 2003, 48(10): 1357–1366
16 Kulkarni  G U, Vijayakrishnan  V, Rao  G R,  State of bismuth in BaBiO3 and BaBi1−xPbxO3: Bi 4f photoemission and Bi L3 absorption spectroscopic studies. Applied Physics Letters, 1990, 57(17): 1823–1824
17 Xie  H, Alonso  J A, Li  T,  Lithium distribution in aluminum-free cubic Li7La3Zr2O12. Chemistry of Materials, 2011, 23(16): 3587–3589
18 Boukamp  B A. Equivalent Circuit, Users Manual. 2nd ed. The Netherlands: University of Twente, 1989, 1
[1] Yun-Xia GAO, Xian-Ping WANG, Qin-Xing SUN, Zhong ZHUANG, Qian-Feng FANG. Electrical properties of garnet-like lithium ionic conductors Li5+xSrxLa3--xBi2O12 fabricated by spark plasma sintering method[J]. Front Mater Sci, 2012, 6(3): 216-224.
[2] Ming-Tao RUN, Xin LI, Chen-Guang YAO, . Thermal degradation behavior and kinetic analysis of poly(L-lactide) in nitrogen and air atmosphere[J]. Front. Mater. Sci., 2010, 4(1): 78-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed