Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2010, Vol. 4 Issue (1) : 78-83    https://doi.org/10.1007/s11706-010-0008-1
Research articles
Thermal degradation behavior and kinetic analysis of poly(L-lactide) in nitrogen and air atmosphere
Ming-Tao RUN,Xin LI,Chen-Guang YAO,
Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China;
 Download: PDF(266 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The non-isothermal and isothermal degradation behaviors and kinetics of poly(L-lactide) (PLLA) were studied by using thermogravimetry analysis (TGA) in nitrogen and air atmosphere, respectively. At lower heating rate ((5–10)°C/min), PLLA starts to decompose in air at lower temperature than those in nitrogen atmosphere; however, at higher heating rate ((20–40)°C/min), the starting decomposition temperature in air are similar to those in nitrogen atmosphere, not only showing that PLLA has better thermal stability in nitrogen than in air atmosphere, but also suggesting that the faster heating rate will decrease the decomposition of PLLA in thermal processing. Whether in air or in nitrogen atmosphere, the decomposition of PLLA has only one-stage degradation with a first-order decomposed reaction, suggesting that the molecular chains of PLLA have the similar decomposed kinetics. The average apparent activation energy of non-isothermal thermal degradation (Ēnon) calculated by Ozawa theory are 231.7kJ·mol−1 in air and 181.6kJ·mol−1 in nitrogen; while the average apparent activation energy of isothermal degradation (Ēiso) calculated by Flynn method are 144.0kJ·mol−1 in air and 129.2kJ·mol−1 in nitrogen, also suggesting that PLLA is easier to decompose in air than in nitrogen. Moreover, the decomposed products of PLLA are also investigated by using thermogravimetry-differential scanning calorimetry-mass spectrometry (TG-DSC-MS). In air atmosphere the volatilization products are more complex than those in nitrogen because the oxidation reaction occurring produces some oxides groups.
Keywords poly(L-lactide) (PLLA)      degradation      kinetics      TG      apparent activation energy      
Issue Date: 05 March 2010
 Cite this article:   
Ming-Tao RUN,Chen-Guang YAO,Xin LI. Thermal degradation behavior and kinetic analysis of poly(L-lactide) in nitrogen and air atmosphere[J]. Front. Mater. Sci., 2010, 4(1): 78-83.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-010-0008-1
https://academic.hep.com.cn/foms/EN/Y2010/V4/I1/78
Li Y, Shimizu H. Improvement in toughnessof poly(L-lactide) (PLLA) through reactive blending with acrylonitrile-butadiene-styrenecopolymer (ABS): Morphology and properties. European Polymer Journal, 2009, 45(3): 738―746

doi: 10.1016/j.eurpolymj.2008.12.010
Li X-G, Huang M-R. Thermal decomposition kineticsof thermotropic poly(oxybenzoate-co-oxynaphthoate) Vectra copolyester. PolymerDegradation and Stability, 1999, 64(1): 81―90

doi: 10.1016/S0141-3910(98)00175-X
Lee J W, Jeong E D, Cho E J, et al. Surface-phase separation of PEO-containing biodegradablePLLA blends and block copolymers. AppliedSurface Science, 2008, 255(5): 2360―2364

doi: 10.1016/j.apsusc.2008.07.121
Xu H, Teng C, Yu M. Improvements of thermal property and crystallizationbehavior of PLLA based multiblock copolymer by forming stereocomplexwith PDLA oligomer. Polymer, 2006, 47(11): 3922―3928

doi: 10.1016/j.polymer.2006.03.090
Milicevic D, Trifunovic S, Galovic S, et al. Thermal and crystallization behaviour of gammairradiated PLLA. Radiation Physics andChemistry, 2007, 76(8―9): 1376―1380

doi: 10.1016/j.radphyschem.2007.02.035
Loo J S C, Ooi C P, Boey F Y C. Degradation of poly(lactide-co-glycolide) (PLGA) and poly(L-lactide) (PLLA) by electron beam radiation. Biomaterials, 2005, 26(12): 1359―1367

doi: 10.1016/j.biomaterials.2004.05.001
Renouf-Glauser A C, Rose J, Farrar D, et al. A degradation study of PLLA containing lauricacid. Biomaterials, 2005, 26(15): 2415―2422

doi: 10.1016/j.biomaterials.2004.07.067
Cam D, Hyon S H, Ikada Y. Degradation of high molecular weight poly(L-lactide)in alkaline medium. Biomaterials, 1995, 16(11): 833―843

doi: 10.1016/0142-9612(95)94144-A
Proikakis C S, Mamouzelos N J, Tarantili P A, et al. Swelling and hydrolytic degradation of poly(D,L-lacticacid) in aqueous solutions. Polymer Degradationand Stability, 2006, 91(3): 614―619

doi: 10.1016/j.polymdegradstab.2005.01.060
Tsuji H, Echizen Y, Nishimura Y. Photodegradation of biodegradable polyesters: A comprehensivestudy on poly(L-lactide) and poly(ϵ-caprolactone). Polymer Degradation and Stability, 2006, 91(5): 1128―1137

doi: 10.1016/j.polymdegradstab.2005.07.007
Chen J H, Li C R. Thermal Analysis and ItsApplication. Beijing: Science Press, 1985 (in Chinese)
Coats A W, Redfern J P. Kinetic parameters from thermogravimetricdata. Nature, 1964, 201: 68―69

doi: 10.1038/201068a0
Ozawa T. A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan, 1965, 38: 1881―1886

doi: 10.1246/bcsj.38.1881
Nam J-D, Seferis J C. Generalized composite degradationkinetics for polymeric systems under isothermal and nonisothermalconditions. Journal of Polymer SciencePart B: Polymer Physics, 1992, 30(5): 455―463

doi: 10.1002/polb.1992.090300505
[1] Zheng-Zheng YIN, Wei HUANG, Xiang SONG, Qiang ZHANG, Rong-Chang ZENG. Self-catalytic degradation of iron-bearing chemical conversion coating on magnesium alloys ---- Influence of Fe content[J]. Front. Mater. Sci., 2020, 14(3): 296-313.
[2] Zhiyu ZHANG, Lixia HU, Hui ZHANG, Liping YU, Yunxiao LIANG. Large-sized nano-TiO2/SiO2 mesoporous nanofilm-constructed macroporous photocatalysts with excellent photocatalytic performance[J]. Front. Mater. Sci., 2020, 14(2): 163-176.
[3] Pengfei ZHU, Zhihao REN, Ruoxu WANG, Ming DUAN, Lisi XIE, Jing XU, Yujing TIAN. Preparation and visible photocatalytic dye degradation of Mn-TiO2/sepiolite photocatalysts[J]. Front. Mater. Sci., 2020, 14(1): 33-42.
[4] Vijaya KUMARI, Anuj MITTAL, Jitender JINDAL, Suprabha YADAV, Naveen KUMAR. S-, N- and C-doped ZnO as semiconductor photocatalysts: A review[J]. Front. Mater. Sci., 2019, 13(1): 1-22.
[5] Huan-Yan XU, Yuan WANG, Tian-Nuo SHI, Hang ZHAO, Qu TAN, Bo-Chao ZHAO, Xiu-Lan HE, Shu-Yan QI. Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: kinetics and Fenton-like mechanism[J]. Front. Mater. Sci., 2018, 12(1): 34-44.
[6] Madhulika SHARMA, Pranab Kishore MOHAPATRA, Dhirendra BAHADUR. Improved photocatalytic degradation of organic dye using Ag3PO4/MoS2 nanocomposite[J]. Front. Mater. Sci., 2017, 11(4): 366-374.
[7] Jun WU, Chentian SHI, Yupeng ZHANG, Qiang FU, Chunxu PAN. Photocatalytic mechanism of high-activity anatase TiO2 with exposed (001) facets from molecular-atomic scale: HRTEM and Raman studies[J]. Front. Mater. Sci., 2017, 11(4): 358-365.
[8] Hui-Yun ZHOU,Pei-Pei CAO,Jie ZHAO,Zhi-Ying WANG,Jun-Bo LI,Fa-Liang ZHANG. Release behavior and kinetic evaluation of berberine hydrochloride from ethyl cellulose/chitosan microspheres[J]. Front. Mater. Sci., 2014, 8(4): 373-382.
[9] Rong-Chang ZENG,Wei-Chen QI,Ying-Wei SONG,Qin-Kun HE,Hong-Zhi CUI,En-Hou HAN. In vitro degradation of MAO/PLA coating on Mg--1.21Li--1.12Ca--1.0Y alloy[J]. Front. Mater. Sci., 2014, 8(4): 343-353.
[10] Xuan LI,Chao SHI,Jing BAI,Chao GUO,Feng XUE,Ping-Hua LIN,Cheng-Lin CHU. Degradation behaviors of surface modified magnesium alloy wires in different simulated physiological environments[J]. Front. Mater. Sci., 2014, 8(3): 281-294.
[11] Xue-Nan GU,Shuang-Shuang LI,Xiao-Ming Li,Yu-Bo Fan. Magnesium based degradable biomaterials: A review[J]. Front. Mater. Sci., 2014, 8(3): 200-218.
[12] Li-Nan ZHANG, Zeng-Tao HOU, Xin YE, Zhao-Bin XU, Xue-Ling BAI, Peng SHANG. The effect of selected alloying element additions on properties of Mg-based alloy as bioimplants: A literature review[J]. Front Mater Sci, 2013, 7(3): 227-236.
[13] Ning ZHU, David COOPER, Xiong-Biao CHEN, Catherine Hui NIU. A study on the in vitro degradation of poly(L-lactide)/chitosan microspheres scaffolds[J]. Front Mater Sci, 2013, 7(1): 76-82.
[14] Hui-Yun ZHOU, Ling-Juan JIANG, Yan-Ping ZHANG, Jun-Bo LI. β-Cyclodextrin inclusion complex: preparation, characterization, and its aspirin release in vitro[J]. Front Mater Sci, 2012, 6(3): 259-267.
[15] Ratna PAL, H. N. NARASIMHA MURTHY, M. SREEJITH, K. R. VISHNU MAHESH, M. KRISHNA, S. C. SHARMA. Effect of laminate thickness on moisture diffusion of polymer matrix composites in artificial seawater ageing[J]. Front Mater Sci, 2012, 6(3): 225-235.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed