Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2013, Vol. 7 Issue (3) : 227-236    https://doi.org/10.1007/s11706-013-0210-z
MINI-REVIEW
The effect of selected alloying element additions on properties of Mg-based alloy as bioimplants: A literature review
Li-Nan ZHANG, Zeng-Tao HOU, Xin YE, Zhao-Bin XU, Xue-Ling BAI, Peng SHANG()
Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
 Download: PDF(163 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This review investigates the current application limitations of Mg and Mg alloys. The key issues hindering the application of biodegradable Mg alloys as implants are their fast degradation rate and biological consideration. We have discussed the effect of some selected alloying element additions on the properties of the Mg-based alloy, especially the nutrient elements in human (Zn, Mn, Ca, Sr). Different grain sizes, phase constituents and distributions consequently influence the mechanical properties of the Mg alloys. Solution strengthening and precipitation strengthening are enhanced by the addition of alloying elements, generally improving the mechanical properties. Besides, the hot working process can also improve the mechanical properties. Combination of different processing steps is suggested to be adopted in the fabrication of Mg-based alloys. Corrosion properties of these Mg-based alloys have been measured in vitro and in vivo. The degradation mechanism is also discussed in terms of corrosion types, rates, by-products and response of the surrounding tissues. Moreover, the clinical response and requirements of degradable implants are presented, especially for the nutrient elements (Ca, Mn, Zn, Sr). This review provides information related to different Mg alloying elements and presents the promising candidates for an ideal implant.

Keywords magnesium alloy      alloying element      corrosion      biodegradation     
Corresponding Author(s): SHANG Peng,Email:shangpeng69@hotmail.com   
Issue Date: 05 September 2013
 Cite this article:   
Li-Nan ZHANG,Zeng-Tao HOU,Xin YE, et al. The effect of selected alloying element additions on properties of Mg-based alloy as bioimplants: A literature review[J]. Front Mater Sci, 2013, 7(3): 227-236.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-013-0210-z
https://academic.hep.com.cn/foms/EN/Y2013/V7/I3/227
MaterialDensity /(g·cm-3)Compressive strength /MPaTensile strength /MPaYoung’s modulus /GPaElongation at fracture /%Refs.
cortical bone1.7-2.0164-24080-1503-303-4[3-4]
magnesium1.74-2.065-10017041-456.1[5-6]
Ti6Al4V4.43758-1117930-1140100-1108-15[4,6]
Co-Cr alloy8.3-9.2450-1000-230-[6]
Co-Cr-Mo alloy--908-1282-8-41[7]
stainless steels7.9-8.1170-310480-620165-20030-40[6]
hydroxyapatite3.05-3.15100-90040-20070-120-
PLLA1.2558.6±1.3-2.86~ 55[8]
AZ911.81-240453[4,9]
EW10--175±11-12±3[10]
LAE4421.62-247-18[3]
WE43-B1.84345220-2
ZK60-230320-12[9]
Mg-Ca-273.2±6.1239.63±7.21-10.63±0.64[11]
Mg-Zn-433.7±1.4279.5±2.342.3±0.118.8±0.8
Mg-Mn-Zn--28044~ 20
Mg-2Sr--213.3±17.2-3.2±0.3[12]
Mg-8Y1.853-201-257-10-14[13]
ZX50--295-26[14]
WZ21--250-28
Mg-4Zn-0.2Ca-297±5-4521.3±3.0[15]
Mg-5Bi-Ca/Si--205/240-40[16]
Tab.1  Comparison of the mechanical properties of different biomaterials for implant applications in comparison with cortical bone
Mg and Mg alloysFabrication methodAlloy composition /wt.%Grain size /μmMain phasesRefs.
Mg-Al-Zn-Al 9Zn 0.5---α-Mg, Mg17Al12[23]
Mg-Al-Zn-Ca-Al 9Zn 0.5Ca 1-3--α-Mg, Mg2Ca, Al2Ca
Mg-Al-Zn-RE-Al 9Zn 0.5RE 0.5-1.5--α-Mg, Mg17Al12, Al4RE
Mg-CacastingCa 0.5---155.5±10α-Mg, Mg2Ca[20]
Mg-Ca-xZncastingCa 0.5Zn 1--91.3±10α-Mg, Mg2Ca, Ca2Mg6Zn3
Ca 0.5Zn 3--87.6±10α-Mg, Ca2Mg6Zn3
Ca 0.5Zn 9--46.2±10α-Mg, Ca2Mg6Zn3, Mg51Ca20
Mg-SrrollingSr 1---32.3±6.7α-Mg, Mg17Sr2[12]
Sr 2---25.9±8.3α-Mg, Mg17Sr2
Sr 3---23.0±8.1α-Mg, Mg17Sr2
Sr 4---20.9±8.8α-Mg, Mg17Sr2
castingSr 1.5---145α-Mg, Mg17Sr2[24]
Mg-ZrcastingZr 5---100-200Mg, MgZr[25]
Mg-Zr-SrcastingZr 5Sr 2--10-25Mg, MgZr, Mg17Sr2
Zr 5Sr 5--10-50Mg, MgZr, Mg17Sr2
Mg-ZncastingZn 6--->20Mg, MgZn[11]
Mg-Zn-SrcastingZn 4.0Sr 0.5--69Mg, MgZn, Mg70Zn25Sr5, Mg71Zn23Sr6[24]
Zn 6.0Sr 0.5--67Mg, MgZn, Mg70Zn25Sr5 , Mg71Zn23Sr6
Mg-Zn-CacastingZn 4.0Ca 0.2--100-300α-Mg, Ca2Mg6Zn3, Ca2Mg5Zn13[15]
extrusionZn 4.0Ca 0.2--3-7α-Mg, Ca2Mg6Zn3, Ca2Mg5Zn13
Mg-Zn-MncastingZn 3Mn 1--50-80α-Mg, Mg7Zn3, Al-Mn (atom ratio 4:5)[26]
extrusionZn 3Mn 1--4α-Mg, Mg7Zn3, Al-Mn (atom ratio 4:5)
Mg-Zn-Mn-CacastingZn 1.8Mn 1.1Ca 0.3-175±15α-Mg, Ca2Mg6Zn3[27]
Zn 2.0Mn 1.2Ca 0.5-63±7α-Mg, Ca2Mg6Zn3
Zn 1.5Mn 1.1Ca 1.0-51±5α-Mg, Mg2Ca, Ca2Mg6Zn3
Mg-Nb-Y-ZrcastingNb1.15Y0.43Zr0.46-43.7±0.2Mg, Mg41Nd5[10]
Mg-Nb-Y-Zr-CacastingNb 1.16Y0.48Zr0.48Ca0.4337.6±3.1Mg, Mg41Nd5, Mg2Ca
Tab.2  Compositions and phase constituents of Mg-based alloys
Mg alloyMediumMeasurementIn vitro corrosion rate, P /(mm·year-1)Refs.
pure MgSBFimmersion testP w30d = 2.13[15]
Mg–4Zn–0.2Ca (as-cast)P w30d = 2.05
Mg–4Zn–0.2Ca (extruded)P w30d = 1.98
AZ91Dborax–phosphate bufferelectrochemical testP = 2.8±0.7[43]
LAE442P = 6.9±1.7
Mg–5Bi–1CaHank’s solutionimmersion testPw48h = 4[16]
Mg–5Bi–1SiPw48h = 7
Mg–6ZnSBFelectrochemical testP = 0.16[11]
immersion testPw30d = 0.07±0.02
Mg–0.5CaKokubo’s SBFelectrochemical testP = 4.2±0.24[20]
Mg–0.5Ca–1ZnP = 4±0.31
Mg–0.5Ca–3ZnP = 5.3±0.38
Mg–0.5Ca–9ZnP = 10.6±0.37
Mg–0.5Caimmersion testPw14d = 1.85
Mg–0.5Ca–1ZnPw14d = 1.23
Mg–0.5Ca–3ZnPw14d ~ 1.80
Mg–0.5Ca–9ZnPw14d = 9.13
Mg–2SrHank’s solutionelectrochemical testP = 0.87±0.08[12]
immersion testP w500h = 0.37±0.05
AZ91DNaCl solutionelectrochemical testP = 2.8–2.93[23]
AZ91D-CaP = 0.64
Tab.3  Corrosion properties of pure Mg and Mg-based alloys
1 George A, Ravindran S. Protein templates in hard tissue engineering. Nano Today , 2010, 5(4): 254–266
2 Niinomi M, Nakai M, Hieda J.Development of new metallic alloys for biomedical applications. Acta Biomaterialia , 2012, 8(11): 3888 -3903
3 Witte F, Hort N, Vogt C, . Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science , 2008, 12(5-6): 63–72
4 Nellesen J, Fischer J, Beckmann F, . Microtomography of magnesium implants in bone and their degradation. In: Bonse U, ed. Proceedings SPIE 6318, Developments in X-Ray Tomography V , 2006, 631806,
doi: 10.1117/12.679844
5 Sankaranarayanan S, Jayalakshmi S, Gupta M. Effect of individual and combined addition of micro/nano-sized metallic elements on the microstructure and mechanical properties of pure Mg. Materials & Design , 2012, 37: 274–284
6 Staiger M P, Pietak A M, Huadmai J, . Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials , 2006, 27(9): 1728–1734
7 Kurosu S, Matsumoto H, Chiba A. Grain refinement of biomedical Co–27Cr–5Mo–0.16N alloy by reverse transformation. Materials Letters , 2010, 64(1): 49–52
8 Cifuentes S C, Frutos E, González-Carrasco J L, . Novel PLLA/magnesium composite for orthopedic applications: A proof of concept. Materials Letters , 2012, 74: 239–242
9 Kainer K U, Bala Srinivasan P, Blawert C, . Corrosion of magnesium and its alloys. In: Tony J A R, ed. Shreir’s Corrosion . Oxford: Elsevier, 2010, 3: 2011–2041
10 Aghion E, Levy G. The effect of Ca on the in vitro corrosion performance of biodegradable Mg–Nd–Y–Zr alloy. Journal of Materials Science , 2010, 45(11): 3096–3101
11 Zhang S, Zhang X, Zhao C, . Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomaterialia , 2010, 6(2): 626–640
12 Gu X N, Xie X H, Li N, . In vitro and in vivo studies on a Mg–Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomaterialia , 2012, 8(6): 2360–2374
13 Peng Q, Huang Y, Zhou L, . Preparation and properties of high purity Mg–Y biomaterials. Biomaterials , 2010, 31(3): 398–403
14 Kraus T, Fischerauer S F, H?nzi A C, . Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta Biomaterialia , 2012, 8(3): 1230–1238
15 Sun Y, Zhang B, Wang Y, . Preparation and characterization of a new biomedical Mg–Zn–Ca alloy. Materials & Design , 2012, 34: 58–64
16 Remennik S, Bartsch I, Willbold E, . New, fast corroding high ductility Mg–Bi–Ca and Mg-Bi-Si alloys, with no clinically observable gas formation in bone implants. Materials Science and Engineering B , 2011, 176(20): 1653–1659
17 Xin Y, Hu T, Chu P K. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomaterialia , 2011, 7(4): 1452–1459
18 Song G, Atrens A. Understanding magnesium corrosion — a framework for improved alloy performance. Advanced Engineering Materials , 2003, 5(12): 837–858
19 Altun H, Sen S. Studies on the influence of chloride ion concentration and pH on the corrosion and electrochemical behaviour of AZ63 magnesium alloy. Materials & Design , 2004, 25(7): 637–643
20 Bakhsheshi-Rad H R, Abdul-Kadir M R, Idris M H, . Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg–0.5Ca–xZn alloys. Corrosion Science , 2012, 64: 184-197
21 Hartwig A.Role of magnesium in genomic stability. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis , 2001, 475(1-2): 113-121
22 Witte F, Kaese V, Haferkamp H, . In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials , 2005, 26(17): 3557–3563
23 Wu G, Fan Y, Gao H, . The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D. Materials Science and Engineering A , 2005, 408(1-2): 255–263
24 Brar H S, Wong J, Manuel M V. Investigation of the mechanical and degradation properties of Mg–Sr and Mg–Zn–Sr alloys for use as potential biodegradable implant materials. Journal of the Mechanical Behavior of Biomedical Materials , 2012, 7: 87–95
25 Li Y, Wen C, Mushahary D, . Mg–Zr–Sr alloys as biodegradable implant materials. Acta Biomaterialia , 2012, 8(8): 3177–3188
26 Zhang E, Yin D, Xu L, . Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application. Materials Science and Engineering C , 2009, 29(3): 987–993
27 Zhang E, Yang L. Microstructure, mechanical properties and bio-corrosion properties of Mg–Zn–Mn–Ca alloy for biomedical application. Materials Science and Engineering A , 2008, 497(1-2): 111–118
28 Du H, Wei Z, Liu X, . Effects of Zn on the microstructure, mechanical property and bio-corrosion property of Mg–3Ca alloys for biomedical application. Materials Chemistry and Physics , 2011, 125(3): 568–575
29 Salahshoor M, Guo Y B. Biodegradable orthopedic magnesium–calcium (MgCa) alloys, processing, and corrosion performance. Materials , 2012, 5(1): 135–155
30 Zhou P, Gong H R. Phase stability, mechanical property, and electronic structure of an Mg–Ca system. Journal of the Mechanical Behavior of Biomedical Materials , 2012, 8: 154–164
31 Li Z, Gu X, Lou S, . The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials , 2008, 29(10): 1329–1344
32 Wan Y, Xiong G, Luo H, . Preparation and characterization of a new biomedical magnesium–calcium alloy. Materials & Design , 2008, 29(10): 2034–2037
33 Bakhsheshi-Rad H R, Idris M H, Abdul-Kadir M R, . Microstructure analysis and corrosion behavior of biodegradable Mg–Ca implant alloys. Materials & Design , 2012, 33: 88–97
34 Xu S W, Kamado S, Honma T. Recrystallization mechanism and the relationship between grain size and Zener–Hollomon parameter of Mg–Al–Zn–Ca alloys during hot compression. Scripta Materialia , 2010, 63(3): 293–296
35 StJohn D H, Qian M, Easton M A, . Grain refinement of magnesium alloys. Metallurgical and Materials Transactions A , 2005, 36(7): 1669-1679
36 Berglund I S, Brar H S, Dolgova N, . Synthesis and characterization of Mg–Ca–Sr alloys for biodegradable orthopedic implant applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials , 2012, 100B(6): 1524–1534
37 Gu X, Zheng Y, Cheng Y, . In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials , 2009, 30(4): 484–498
38 Khan S A, Miyashita Y, Mutoh Y, . Influence of Mn content on mechanical properties and fatigue behavior of extruded Mg alloys. Materials Science and Engineering A , 2006, 420(1-2): 315–321
39 Zainal Abidin N I, Atrens A D, Martin D, . Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank’s solution at 37°C. Corrosion Science , 2011, 53(11): 3542–3556
40 Xiao W, Jia S, Wang L, . The microstructures and mechanical properties of cast Mg–Zn–Al–RE alloys. Journal of Alloys and Compounds , 2009, 480(2): L33–L36
41 Kim H K, Kim W J. Microstructural instability and strength of an AZ31 Mg alloy after severe plastic deformation. Materials Science and Engineering A , 2004, 385(1-2): 300–308
42 Li Y C, Wong C S, Wen C, . Biodegradable Mg–Zr–Ca alloys for bone implant materials. Materials Technology: Advanced Performance Materials , 2012, 27(1): 49–51
43 Witte F, Fischer J, Nellesen J, . In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials , 2006, 27(7): 1013–1018
44 Gu X N, Zhou W R, Zheng Y F, . Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - in simulated body fluid. Acta Biomaterialia , 2010, 6(12): 4605–4613
45 Yang L, Huang Y D, Feyerabend F, . Influence of ageing treatment on microstructure, mechanical and bio-corrosion properties of Mg–Dy alloys. Journal of the Mechanical Behavior of Biomedical Materials , 2012, 13: 36–44
46 Chang J-W, Guo X-W, Fu P-H, . Effect of heat treatment on corrosion and electrochemical behaviour of Mg–3Nd–0.2Zn–0.4Zr (wt.%) alloy. Electrochimica Acta , 2007, 52(9): 3160–3167
47 Liang S, Guan D, Tan X. The relation between heat treatment and corrosion behavior of Mg–Gd–Y–Zr alloy. Materials & Design , 2011, 32(3): 1194–1199
48 Peng L M, Chang J W, Guo X W, . Influence of heat treatment and microstructure on the corrosion of magnesium alloy Mg–10Gd–3Y–0.4Zr. Journal of Applied Electrochemistry , 2009, 39(6): 913–920
49 Xu L P, Yu G N, Zhang E, . In vivo corrosion behavior of Mg–Mn–Zn alloy for bone implant application. Journal of Biomedical Materials Research Part A , 2007, 83A(3): 703–711
50 Aghion E, Levy G, Ovadia S. In vivo behavior of biodegradable Mg–Nd–Y–Zr–Ca alloy. Journal of Materials Science: Materials in Medicine , 2012, 23(3): 805–812
51 Erdmann N, Angrisani N, Reifenrath J, . Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: A comparative in vivo study in rabbits. Acta Biomaterialia , 2011, 7(3): 1421–1428
[1] Xiang SUN, Qing-Song YAO, Yu-Chao LI, Fen ZHANG, Rong-Chang ZENG, Yu-Hong ZOU, Shuo-Qi LI. Biocorrosion resistance and biocompatibility of Mg--Al layered double hydroxide/poly(L-lactic acid) hybrid coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(4): 426-441.
[2] Lei CHANG, Xiangrui LI, Xuhui TANG, He ZHANG, Ding HE, Yujun WANG, Jiayin ZHAO, Jingan LI, Jun WANG, Shijie ZHU, Liguo WANG, Shaokang GUAN. Micro-patterned hydroxyapatite/silk fibroin coatings on Mg--Zn--Y--Nd--Zr alloys for better corrosion resistance and cell behavior guidance[J]. Front. Mater. Sci., 2020, 14(4): 413-425.
[3] Zheng-Zheng YIN, Wei HUANG, Xiang SONG, Qiang ZHANG, Rong-Chang ZENG. Self-catalytic degradation of iron-bearing chemical conversion coating on magnesium alloys ---- Influence of Fe content[J]. Front. Mater. Sci., 2020, 14(3): 296-313.
[4] Huan-Yan XU, Dan LU, Xu HAN. Graphene-induced enhanced anticorrosion performance of waterborne epoxy resin coating[J]. Front. Mater. Sci., 2020, 14(2): 211-220.
[5] Zai-Meng QIU, Fen ZHANG, Jun-Tong CHU, Yu-Chao LI, Liang SONG. Corrosion resistance and hydrophobicity of myristic acid modified Mg--Al LDH/Mg(OH)2 steam coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(1): 96-107.
[6] Mengke PENG, Fenyan HU, Minting DU, Bingjie MAI, Shurong ZHENG, Peng LIU, Changhao WANG, Yashao CHEN. Hydrothermal growth of hydroxyapatite and ZnO bilayered nanoarrays on magnesium alloy surface with antibacterial activities[J]. Front. Mater. Sci., 2020, 14(1): 14-23.
[7] Wei WU, Fen ZHANG, Yu-Chao LI, Yong-Feng ZHOU, Qing-Song YAO, Liang SONG, Rong-Chang ZENG, Sie Chin TJONG, Dong-Chu CHEN. Corrosion resistance of a silane/ceria modified Mg--Al-layered double hydroxide on AA5005 aluminum alloy[J]. Front. Mater. Sci., 2019, 13(4): 420-430.
[8] Xiao-Jing JI, Qiang CHENG, Jing WANG, Yan-Bin ZHAO, Zhuang-Zhuang HAN, Fen ZHANG, Shuo-Qi LI, Rong-Chang ZENG, Zhen-Lin WANG. Corrosion resistance and antibacterial effects of hydroxyapatite coating induced by polyacrylic acid and gentamicin sulfate on magnesium alloy[J]. Front. Mater. Sci., 2019, 13(1): 87-98.
[9] Lian GUO, Fen ZHANG, Jun-Cai LU, Rong-Chang ZENG, Shuo-Qi LI, Liang SONG, Jian-Min ZENG. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys[J]. Front. Mater. Sci., 2018, 12(2): 198-206.
[10] Ling-Yu LI, Bin LIU, Rong-Chang ZENG, Shuo-Qi LI, Fen ZHANG, Yu-Hong ZOU, Hongwei (George) JIANG, Xiao-Bo CHEN, Shao-Kang GUAN, Qing-Yun LIU. In vitro corrosion of magnesium alloy AZ31 --- a synergetic influence of glucose and Tris[J]. Front. Mater. Sci., 2018, 12(2): 184-197.
[11] Feng LI, Yang LIU, Xu-Bo LI. Dynamic recrystallization behavior of AZ31 magnesium alloy processed by alternate forward extrusion[J]. Front. Mater. Sci., 2017, 11(3): 296-305.
[12] Lan-Yue CUI, Xiao-Ting LI, Rong-Chang ZENG, Shuo-Qi LI, En-Hou HAN, Liang SONG. In vitro corrosion of Mg--Ca alloy --- The influence of glucose content[J]. Front. Mater. Sci., 2017, 11(3): 284-295.
[13] Tao JIN,Fan-mei KONG,Rui-qin BAI,Ru-liang ZHANG. Anti-corrosion mechanism of epoxy-resin and different content Fe2O3 coatings on magnesium alloy[J]. Front. Mater. Sci., 2016, 10(4): 367-374.
[14] Li-Da HOU,Zhen LI,Yu PAN,MuhammadIqbal SABIR,Yu-Feng ZHENG,Li LI. A review on biodegradable materials for cardiovascular stent application[J]. Front. Mater. Sci., 2016, 10(3): 238-259.
[15] Yu-Hong ZOU,Rong-Chang ZENG,Qing-Zhao WANG,Li-Jun LIU,Qian-Qian XU,Chuang WANG,Zhiwei LIU. Blood compatibility of zinc–calcium phosphate conversion coating on Mg–1.33Li–0.6Ca alloy[J]. Front. Mater. Sci., 2016, 10(3): 281-289.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed