Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2020, Vol. 14 Issue (1) : 14-23    https://doi.org/10.1007/s11706-020-0489-5
RESEARCH ARTICLE
Hydrothermal growth of hydroxyapatite and ZnO bilayered nanoarrays on magnesium alloy surface with antibacterial activities
Mengke PENG1, Fenyan HU1, Minting DU1, Bingjie MAI2, Shurong ZHENG1, Peng LIU3, Changhao WANG1(), Yashao CHEN1()
1. Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
2. Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Ministry of Education), National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
3. Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Bioengineering, Chongqing University, Chongqing 400044, China
 Download: PDF(2475 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Magnesium alloy (MgA) has been extensively used as orthopedic and cardiovascular scaffolds in virtue of its good biocompatibility, unique biodegradability and excellent mechanical properties. However, poor corrosion resistance and easy infection after implantation seriously limit the potential applications of MgA in the biomedical field. Herein, we fabricated bilayered nanoarrays of hydroxyapatite nanorods (HANRs) and ZnO nanorods (ZnONRs) onto the surface of MgA (MgA–MgO–HANRs– ZnONRs) via micro-arc oxidation (MAO) treatment, microwave-assisted hydrothermal and hydrothermal methods. The morphology and chemical composition of MgA–MgO– HANRs–ZnONRs was characterized by FE-SEM, XRD and EDS, indicating that HANRs–ZnONRs bilayered nanoarrays were fabricated on the surface of MgA–MgO. The surface of MgA–MgO–HANRs–ZnONRs exhibited excellent hydrophilicity as evidenced by the low water contact angle of 3°. Compared with the original MgA, the corrosion resistance of MgA–MgO–HANRs–ZnONRs was obviously improved with decreasing the corrosive current density (icorr) of 2 orders of magnitude. The MgA–MgO– HANRs–ZnONRs performed excellent antibacterial properties with the bactericidal rate of 96.5% against S. aureus and 94.3% against E. coli.

Keywords magnesium alloy      nanoarray      hydrothermal synthesis      antibacterial activity      corrosion resistance     
Corresponding Author(s): Changhao WANG,Yashao CHEN   
Online First Date: 27 December 2019    Issue Date: 05 March 2020
 Cite this article:   
Mengke PENG,Fenyan HU,Minting DU, et al. Hydrothermal growth of hydroxyapatite and ZnO bilayered nanoarrays on magnesium alloy surface with antibacterial activities[J]. Front. Mater. Sci., 2020, 14(1): 14-23.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-020-0489-5
https://academic.hep.com.cn/foms/EN/Y2020/V14/I1/14
Fig.1  Schematic representation of the working flow for preparing MgA?MgO?HANRs?ZnONRs.
Fig.2  FE-SEM images of (a) MgA, (b) MgA?MgO, (c) MgA?MgO?HANRs and (d) MgA?MgO?HANRs?ZnONRs. (e) FE-SEM image and (f) EDS elemental mappings for cross-section of MgA?MgO?HANRs?ZnONRs.
Fig.3  FTIR spectra of MgA (a), MgA?MgO (b), MgA?MgO?HANRs (c) and MgA?MgO?HANRs?ZnONRs (d).
Fig.4  XRD patterns of MgA (a), MgA?MgO (b), MgA?MgO?HANRs (c) and MgA?MgO?HANRs?ZnONRs (d).
Fig.5  Water contact angles of (a) MgA, (b) MgA?MgO, (c) MgA?MgO?HANRs and (d) MgA?MgO?HANRs?ZnONRs.
Fig.6  Potentiodynamic polarization curves of MgA (a), MgA?MgO (b), MgA?MgO?HANRs (c) and MgA?MgO?HANRs?ZnONRs (d).
Sample Ecorr/V icorr/(A·cm−2)
MgA −1.68 1.09×10−3
MgA?MgO −1.74 5.18×10−4
MgA?MgO?HANRs −1.67 3.94×10−5
MgA?MgO?HANRs?ZnONRs −1.58 1.72×10−5
Tab.1  The corrosion potential (Ecorr) and corrosion current (icorr) of different MgA samples
Fig.7  E.coli and S. aureus formed on LB agar plates and antibacterial rate with different MgA samples: (a) MgA; (b) MgA?MgO?HANRs; (c) MgA?MgO?HANRs?ZnONRs.
  Fig. S1 EDS spectra of (a) MgA, (b) MgA?MgO, (c) MgA?MgO?HANRs and (d) MgA?MgO?HANRs?ZnONRs.
Sample Element content/at.%
Mg O P Ca Zn
MgA 100.00 n.d. n.d. n.d. n.d.
MgA?MgO 45.52 40.44 7.58 6.46 n.d.
MgA?MgO?HANRs 32.95 56.68 4.41 5.96 n.d.
MgA?MgO?HANRs?ZnONRs n.d. 33.41 n.d. n.d. 66.59
  Table S1 The chemical composition of different MgA samples
  Fig. S2 FE-SEM images of E. coli and S. aureus (a) before and (b) after treatment with MgA?MgO?HANRs?ZnONRs.
  Fig. S3(a) Zn2+ release profile of MgA?MgO?HANRs?ZnONRs in PBS buffer. (b)(c)(d) FE-SEM images of MgA?MgO?HANRs?ZnONRs in PBS buffer at different time. (e) EDS result.
1 G S Wu, J M Ibrahim, P K Chu. Surface design of biodegradable magnesium alloys — A review. Surface and Coatings Technology, 2013, 233(1): 2–12
https://doi.org/10.1016/j.surfcoat.2012.10.009
2 Y F Ding, C E Wen, P Hodgson, et al.. Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2014, 2(14): 1912–1933
https://doi.org/10.1039/C3TB21746A
3 L Y Han, X Li, F Xue, et al.. Biocorrosion behavior of micro-arc-oxidized AZ31 magnesium alloy in different simulated dynamic physiological environments. Surface and Coatings Technology, 2019, 361(15): 240–248
https://doi.org/10.1016/j.surfcoat.2019.01.052
4 Y Chen, Z Xu, C Smith, et al.. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomaterialia, 2014, 10(11): 4561–4573
https://doi.org/10.1016/j.actbio.2014.07.005 pmid: 25034646
5 Y Xin, T Hu, P K Chu. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomaterialia, 2011, 7(4): 1452–1459
https://doi.org/10.1016/j.actbio.2010.12.004 pmid: 21145436
6 X J Ji, Q Cheng, J Wang, et al.. Corrosion resistance and antibacterial effects of hydroxyapatite coating induced by polyacrylic acid and gentamicin sulfate on magnesium alloy. Frontiers of Materials Science, 2019, 13(1): 87–98
https://doi.org/10.1007/s11706-019-0448-1
7 G Song. Recent progress in corrosion and protection of magnesium alloys. Advanced Engineering Materials, 2005, 7(7): 563–586
https://doi.org/10.1002/adem.200500013
8 A Zomorodian, M P Garcia, T Moura E Silva, et al.. Biofunctional composite coating architectures based on polycaprolactone and nanohydroxyapatite for controlled corrosion activity and enhanced biocompatibility of magnesium AZ31 alloy. Materials Science and Engineering C, 2015, 48(1): 434–443
https://doi.org/10.1016/j.msec.2014.12.027 pmid: 25579944
9 X J Cui, X Z Lin, C H Liu, et al.. Fabrication and corrosion resistance of a hydrophobic micro-arc oxidation coating on AZ31 Mg alloy. Corrosion Science, 2015, 90: 402–412
https://doi.org/10.1016/j.corsci.2014.10.041
10 S Chen, J Zhang, Y Chen, et al.. Application of phenol/amine copolymerized film modified magnesium alloys: anticorrosion and surface biofunctionalization. ACS Applied Materials & Interfaces, 2015, 7(44): 24510–24522
https://doi.org/10.1021/acsami.5b05851 pmid: 26479205
11 X D Zhang, J H Yi, G W Zhao, et al.. Layer-by-layer assembly of silver nanoparticles embedded polyelectrolyte multilayer on magnesium alloy with enhanced antibacterial property. Surface and Coatings Technology, 2016, 286(25): 103–112
https://doi.org/10.1016/j.surfcoat.2015.12.018
12 P P Wu, Z Z Zhang, F J Xu, et al.. Effect of duty cycle on preparation and corrosion behavior of electrodeposited calcium phosphate coatings on AZ91. Applied Surface Science, 2017, 426(31): 418–426
https://doi.org/10.1016/j.apsusc.2017.07.111
13 X Wang, X Zeng, G Wu, et al.. The effect of Y-ion implantation on the oxidation of AZ31 magnesium alloy. Materials Letters, 2007, 61(4‒5): 968–970
https://doi.org/10.1016/j.matlet.2006.06.026
14 J L Liu, H J Yu, C Z Chen, et al.. Research and development status of laser cladding on magnesium alloys: A review. Optics and Lasers in Engineering, 2017, 93: 195–210
https://doi.org/10.1016/j.optlaseng.2017.02.007
15 L C Zhang, M Z Xu, Y D Hu, et al.. Biofunctionization of biodegradable magnesium alloy to improve the in vitro corrosion resistance and biocompatibility. Applied Surface Science, 2018, 451(1): 20–31
https://doi.org/10.1016/j.apsusc.2018.04.235
16 H Hu, W Zhang, Y Qiao, et al.. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomaterialia, 2012, 8(2): 904–915
https://doi.org/10.1016/j.actbio.2011.09.031 pmid: 22023752
17 T M Mukhametkaliyev, M A Surmeneva, A Vladescu, et al.. A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance. Materials Science and Engineering C, 2017, 75: 95–103
https://doi.org/10.1016/j.msec.2017.02.033 pmid: 28415551
18 C Hsu, M H Nazari, Q Z Li, et al.. Enhancing degradation and corrosion resistance of AZ31 magnesium alloy through hydrophobic coating. Materials Chemistry and Physics, 2019, 225: 426–432
https://doi.org/10.1016/j.matchemphys.2018.12.106
19 Y Gao, L F Zhao, X H Yao, et al.. Corrosion behavior of porous ZrO2 ceramic coating on AZ31B magnesium alloy. Surface and Coatings Technology, 2018, 349(15): 434–441
https://doi.org/10.1016/j.surfcoat.2018.06.018
20 R N Ji, M Y Ma, Y T He, et al.. Improved corrosion resistance of Al2O3 ceramic coatings on AZ31 magnesium alloy fabricated through cathode plasma electrolytic deposition combined with surface pore-sealing treatment. Ceramics International, 2018, 44(13): 15192–15199
https://doi.org/10.1016/j.ceramint.2018.05.159
21 R N Ji, G C Peng, S G Zhang, et al.. The fabrication of a CeO2 coating via cathode plasma electrolytic deposition for the corrosion resistance of AZ31 magnesium alloy. Ceramics International, 2018, 44(16): 19885–19891
https://doi.org/10.1016/j.ceramint.2018.07.250
22 A Pandey, S Midha, R K Sharma, et al.. Antioxidant and antibacterial hydroxyapatite-based biocomposite for orthopedic applications. Materials Science and Engineering C, 2018, 88(1): 13–24
https://doi.org/10.1016/j.msec.2018.02.014 pmid: 29636127
23 T T Shen, W H Yang, X K Shen, et al.. Polydopamine-assisted hydroxyapatite and lactoferrin multilayer on titanium for regulating bone balance and enhancing antibacterial property. ACS Biomaterials Science & Engineering, 2018, 4(9): 3211–3223
https://doi.org/10.1021/acsbiomaterials.8b00791
24 Z Ding, H Han, Z Fan, et al.. Nanoscale silk-hydroxyapatite hydrogels for injectable bone biomaterials. ACS Applied Materials & Interfaces, 2017, 9(20): 16913–16921
https://doi.org/10.1021/acsami.7b03932 pmid: 28471165
25 M Zhang, S Cai, F Zhang, et al.. Preparation and corrosion resistance of magnesium phytic acid/hydroxyapatite composite coatings on biodegradable AZ31 magnesium alloy. Journal of Materials Science: Materials in Medicine, 2017, 28(6): 82 (9 pages)
https://doi.org/10.1007/s10856-017-5876-9 pmid: 28424946
26 T L Wang, G Z Yang, W C Zhou, et al.. One-pot hydrothermal synthesis, in vitro biodegradation and biocompatibility of Sr-doped nanorod/nanowire hydroxyapatite coatings on ZK60 magnesium alloy. Journal of Alloys and Compounds, 2019, 799(30): 71–82
https://doi.org/10.1016/j.jallcom.2019.05.338
27 H R Bakhsheshi-Rad, E Hamzah, A F Ismail, et al.. Synthesis of a novel nanostructured zinc oxide/baghdadite coating on Mg alloy for biomedical application: In-vitro degradation behavior and antibacterial activities. Ceramics International, 2017, 43(17): 14842–14850
https://doi.org/10.1016/j.ceramint.2017.07.233
28 M Marini, M Bondi, R Iseppi, et al.. Preparation and antibacterial activity of hybrid materials containing quaternary ammonium salts via sol-gel process. European Polymer Journal, 2007, 43(8): 3621–3628
https://doi.org/10.1016/j.eurpolymj.2007.06.002
29 G Gao, D Lange, K Hilpert, et al.. The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials, 2011, 32(16): 3899–3909
https://doi.org/10.1016/j.biomaterials.2011.02.013 pmid: 21377727
30 Z Geng, R Wang, X Zhuo, et al.. Incorporation of silver and strontium in hydroxyapatite coating on titanium surface for enhanced antibacterial and biological properties. Materials Science and Engineering C, 2017, 71(1): 852–861
https://doi.org/10.1016/j.msec.2016.10.079 pmid: 27987782
31 M Roy, G A Fielding, H Beyenal, et al.. Mechanical, in vitro antimicrobial, and biological properties of plasma-sprayed silver-doped hydroxyapatite coating. ACS Applied Materials & Interfaces, 2012, 4(3): 1341–1349
https://doi.org/10.1021/am201610q pmid: 22313742
32 K Wang, J He. One-pot fabrication of antireflective/antibacterial dual-function Ag NP-containing mesoporous silica thin films. ACS Applied Materials & Interfaces, 2018, 10(13): 11189–11196
https://doi.org/10.1021/acsami.8b00192 pmid: 29578679
33 A Hatamie, A Khan, M Golabi, et al.. Zinc oxide nanostructure-modified textile and its application to biosensing, photocatalysis, and as antibacterial material. Langmuir, 2015, 31(39): 10913–10921
https://doi.org/10.1021/acs.langmuir.5b02341 pmid: 26372851
34 H Liao, X Miao, J Ye, et al.. Falling leaves inspired ZnO nanorods–nanoslices hierarchical structure for implant surface modification with two stage releasing features. ACS Applied Materials & Interfaces, 2017, 9(15): 13009–13015
https://doi.org/10.1021/acsami.7b00666 pmid: 28371577
35 J Li, L Tan, X Liu, et al.. Balancing bacteria-osteoblast competition through selective physical puncture and biofunctionalization of ZnO/polydopamine/arginine-glycine-aspartic acid-cysteine nanorods. ACS Nano, 2017, 11(11): 11250–11263
https://doi.org/10.1021/acsnano.7b05620 pmid: 29049874
36 Y Lin, S Cai, S Jiang, et al.. Enhanced corrosion resistance and bonding strength of Mg substituted b-tricalcium phosphate/Mg(OH)2 composite coating on magnesium alloys via one-step hydrothermal method. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90: 547–555
https://doi.org/10.1016/j.jmbbm.2018.11.007 pmid: 30471542
37 D Gopi, N Murugan, S Ramya, et al.. Electrodeposition of a porous strontium substituted hydroxyapatite/zinc oxide duplex layer on AZ91 magnesium alloy for orthopedic applications. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2014, 2(34): 5531–5540
https://doi.org/10.1039/C4TB00960F
38 O Yamamoto, M Komatsu, J Sawai, et al.. Effect of lattice constant of zinc oxide on antibacterial characteristics. Journal of Materials Science: Materials in Medicine, 2004, 15(8): 847–851
https://doi.org/10.1023/B:JMSM.0000036271.35440.36 pmid: 15477735
39 Y W Wang, A Cao, Y Jiang, et al.. Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Applied Materials & Interfaces, 2014, 6(4): 2791–2798
https://doi.org/10.1021/am4053317 pmid: 24495147
[1] Xiang SUN, Qing-Song YAO, Yu-Chao LI, Fen ZHANG, Rong-Chang ZENG, Yu-Hong ZOU, Shuo-Qi LI. Biocorrosion resistance and biocompatibility of Mg--Al layered double hydroxide/poly(L-lactic acid) hybrid coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(4): 426-441.
[2] Lei CHANG, Xiangrui LI, Xuhui TANG, He ZHANG, Ding HE, Yujun WANG, Jiayin ZHAO, Jingan LI, Jun WANG, Shijie ZHU, Liguo WANG, Shaokang GUAN. Micro-patterned hydroxyapatite/silk fibroin coatings on Mg--Zn--Y--Nd--Zr alloys for better corrosion resistance and cell behavior guidance[J]. Front. Mater. Sci., 2020, 14(4): 413-425.
[3] Zheng-Zheng YIN, Wei HUANG, Xiang SONG, Qiang ZHANG, Rong-Chang ZENG. Self-catalytic degradation of iron-bearing chemical conversion coating on magnesium alloys ---- Influence of Fe content[J]. Front. Mater. Sci., 2020, 14(3): 296-313.
[4] Xin LIU, Xiangling REN, Longfei TAN, Wenna GUO, Zhongbing HUANG, Xianwei MENG. Preparation and enhanced properties of ZrMOF@CdTe nanoparticles with high-density quantum dots[J]. Front. Mater. Sci., 2020, 14(2): 155-162.
[5] Zai-Meng QIU, Fen ZHANG, Jun-Tong CHU, Yu-Chao LI, Liang SONG. Corrosion resistance and hydrophobicity of myristic acid modified Mg--Al LDH/Mg(OH)2 steam coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(1): 96-107.
[6] Wei WU, Fen ZHANG, Yu-Chao LI, Yong-Feng ZHOU, Qing-Song YAO, Liang SONG, Rong-Chang ZENG, Sie Chin TJONG, Dong-Chu CHEN. Corrosion resistance of a silane/ceria modified Mg--Al-layered double hydroxide on AA5005 aluminum alloy[J]. Front. Mater. Sci., 2019, 13(4): 420-430.
[7] Xiao-Jing JI, Qiang CHENG, Jing WANG, Yan-Bin ZHAO, Zhuang-Zhuang HAN, Fen ZHANG, Shuo-Qi LI, Rong-Chang ZENG, Zhen-Lin WANG. Corrosion resistance and antibacterial effects of hydroxyapatite coating induced by polyacrylic acid and gentamicin sulfate on magnesium alloy[J]. Front. Mater. Sci., 2019, 13(1): 87-98.
[8] Lian GUO, Fen ZHANG, Jun-Cai LU, Rong-Chang ZENG, Shuo-Qi LI, Liang SONG, Jian-Min ZENG. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys[J]. Front. Mater. Sci., 2018, 12(2): 198-206.
[9] Ling-Yu LI, Bin LIU, Rong-Chang ZENG, Shuo-Qi LI, Fen ZHANG, Yu-Hong ZOU, Hongwei (George) JIANG, Xiao-Bo CHEN, Shao-Kang GUAN, Qing-Yun LIU. In vitro corrosion of magnesium alloy AZ31 --- a synergetic influence of glucose and Tris[J]. Front. Mater. Sci., 2018, 12(2): 184-197.
[10] Feng LI, Yang LIU, Xu-Bo LI. Dynamic recrystallization behavior of AZ31 magnesium alloy processed by alternate forward extrusion[J]. Front. Mater. Sci., 2017, 11(3): 296-305.
[11] Tao JIN,Fan-mei KONG,Rui-qin BAI,Ru-liang ZHANG. Anti-corrosion mechanism of epoxy-resin and different content Fe2O3 coatings on magnesium alloy[J]. Front. Mater. Sci., 2016, 10(4): 367-374.
[12] Li-Da HOU,Zhen LI,Yu PAN,MuhammadIqbal SABIR,Yu-Feng ZHENG,Li LI. A review on biodegradable materials for cardiovascular stent application[J]. Front. Mater. Sci., 2016, 10(3): 238-259.
[13] Yu-Hong ZOU,Rong-Chang ZENG,Qing-Zhao WANG,Li-Jun LIU,Qian-Qian XU,Chuang WANG,Zhiwei LIU. Blood compatibility of zinc–calcium phosphate conversion coating on Mg–1.33Li–0.6Ca alloy[J]. Front. Mater. Sci., 2016, 10(3): 281-289.
[14] Lan-Yue CUI,Rong-Chang ZENG,Xiao-Xiao ZHU,Ting-Ting PANG,Shuo-Qi LI,Fen ZHANG. Corrosion resistance of biodegradable polymeric layer-by-layer coatings on magnesium alloy AZ31[J]. Front. Mater. Sci., 2016, 10(2): 134-146.
[15] Guangfa WANG,Linhui GAO,Hongliang ZHU,Weijie ZHOU. Hydrothermal synthesis of blue-emitting YPO4:Yb3+ nanophosphor[J]. Front. Mater. Sci., 2016, 10(2): 197-202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed