Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2019, Vol. 13 Issue (1) : 87-98    https://doi.org/10.1007/s11706-019-0448-1
RESEARCH ARTICLE
Corrosion resistance and antibacterial effects of hydroxyapatite coating induced by polyacrylic acid and gentamicin sulfate on magnesium alloy
Xiao-Jing JI1, Qiang CHENG1, Jing WANG1, Yan-Bin ZHAO1, Zhuang-Zhuang HAN1, Fen ZHANG1, Shuo-Qi LI1(), Rong-Chang ZENG1(), Zhen-Lin WANG2
1. College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2. College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400065, China
 Download: PDF(4559 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Magnesium (Mg) alloys have attracted considerable research attention as potential biocompatible implant materials. However, the major barriers to the extended use of such medical devices are the possibility of high corrosion rate and implant-associated infections. To solve them, a novel polyacrylic acid (PAA)/gentamicin sulfate (GS)-hydroxyapatite (HAp) coating was synthesized by a one-step hydrothermal deposition method. Characteristics of functional coatings were investigated by SEM, FTIR and XRD. Corrosion properties of samples were evaluated by electrochemical and hydrogen evolution tests. Antibacterial activities of the coatings against Staphylococcus aureus (S. aureus) were measured by the plate-counting method. Results showed that the as-prepared HAp coating with dense and flawless morphologies could not only enhance the corrosion resistance of Mg alloys, but also improve the adhesion strength between the HAp coating and the substrate. In addition, the induction of the apatite coating during immersion confirmed the excellent mineralization ability of the HAp coating. Moreover, the obtained HAp coating possessed antibacterial properties and could prolong the release of GS. Thus, the PAA/GS-HAp coated Mg alloy could serve as a better candidate for biomedical applications with good anti-corrosion and antibacterial properties.

Keywords magnesium alloy      corrosion resistance      antibacterial performance      drug release      hydroxyapatite coating     
Corresponding Author(s): Shuo-Qi LI,Rong-Chang ZENG   
Online First Date: 16 January 2019    Issue Date: 07 March 2019
 Cite this article:   
Xiao-Jing JI,Qiang CHENG,Jing WANG, et al. Corrosion resistance and antibacterial effects of hydroxyapatite coating induced by polyacrylic acid and gentamicin sulfate on magnesium alloy[J]. Front. Mater. Sci., 2019, 13(1): 87-98.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-019-0448-1
https://academic.hep.com.cn/foms/EN/Y2019/V13/I1/87
Element Content/wt.%
Al 3.1382
Zn 1.0268
Mn 0.4395
Si 0.0029
Fe 0.0018
Cu 0.0007
Ni 0.0007
Mg balance
Tab.1  Chemical compositions of as-extruded AZ31 alloys
Fig.1  Schematic representation of the preparation of HAp/Mg, GS-HAp/Mg and PAA/GS-HAp/Mg.
Fig.2  SEM images of (a) pure HAp, (b) GS-HAp and (c) PAA/GS-HAp coatings. (d) Corresponding EDS spectra of all coatings.
Fig.3  Cross-sectional morphologies (upper) and corresponding line scan images (lower) of (a)(d) pure HAp, (b)(e) GS-HAp and (c)(f) PAA/GS-HAp coatings.
Fig.4  (a) FTIR spectra and (b) XRD patterns of pure HAp (i), GS-HAp (ii) and PAA/GS-HAp (iii) coatings.
Fig.5  Scratch results of pure HAp (a), GS-HAp (b) and PAA/GS-HAp (c) coatings.
Fig.6  (a) Polarization curves, (b) Nyquist plots and fitting curves, (c) Bode plots and (d) Bode plots of the phase angle versus frequency of the AZ31 substrate (i), HAp/Mg (ii), GS-HAp/Mg (iii) and PAA/GS-HAp/Mg (iv).
Fig.7  ? (a)(b) EEC?models and (c) Rct of all samples in HBSS.
Fig.8  (a) HER results and (b) FTIR spectra of the AZ31 substrate (i), HAp/Mg (ii), GS-HAp/Mg (iii) and PAA/GS-HAp/Mg (iv) immersed in HBSS for 180 h.
Fig.9  SEM morphologies (upper) and corresponding EDS spectra (lower) of (a)(e) uncoated, (b)(f) pure HAp, (c)(g) GS-HAp and (d)(h) PAA/GS-HAp coated samples immersed in HBSS for 180 h.
Fig.10  Representative images and CFU numbers of viable bacteria growth of S. aureus colonies on different samples: control group (a), AZ31 substrate (b), HAp/Mg (c), GS-HAp/Mg (d) and PAA/GS-HAp/Mg (e) after culturing for 24 h.
Fig.11  (a) Cumulative GS release profiles and (b) total GS content and entrapment efficiency of GS-HAp (i) and PAA/GS-HAp (ii) coatings in PBS for 360 h.
1 DZhu, Y Su, M LYoung, et al.. Biological responses and mechanisms of human bone marrow mesenchymal stem cells to Zn and Mg biomaterials. ACS Applied Materials & Interfaces, 2017, 9(33): 27453–27461
https://doi.org/10.1021/acsami.7b06654 pmid: 28787130
2 XZhang, X W Li, J G Li, et al.. Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering. Materials Science and Engineering C, 2014, 42: 362–367
https://doi.org/10.1016/j.msec.2014.05.044 pmid: 25063129
3 FWitte, V Kaese, HHaferkamp, et al.. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 2005, 26(17): 3557–3563
https://doi.org/10.1016/j.biomaterials.2004.09.049 pmid: 15621246
4 MRazavi, M Fathi, OSavabi, et al.. Nanostructured merwinite bioceramic coating on Mg alloy deposited by electrophoretic deposition. Ceramics International, 2014, 40(7): 9473–9484
https://doi.org/10.1016/j.ceramint.2014.02.020
5 Y BZhao, L Q Shi, L Y Cui, et al.. Corrosion resistance of silane-modified hydroxyapatite films on degradable magnesium alloys. Acta Metallurgica Sinica (English Letters), 2018, 31(2): 180–188
https://doi.org/10.1007/s40195-017-0601-8
6 L YCui, G B Wei, R C Zeng, et al.. Corrosion resistance of a novel SnO2-doped dicalcium phosphate coating on AZ31 magnesium alloy. Bioactive Materials, 2018, 3(3): 245–249
https://doi.org/10.1016/j.bioactmat.2017.11.001 pmid: 29744463
7 YLiu, J Huang, HLi. Synthesis of hydroxyapatite-reduced graphite oxide nanocomposites for biomedical applications: oriented nucleation and epitaxial growth of hydroxyapatite. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2013, 1(13): 1826–1834
https://doi.org/10.1039/c3tb00531c
8 YLiu, Z Dang, YWang, et al.. Hydroxyapatite/graphene-nanosheet composite coatings deposited by vacuum cold spraying for biomedical applications: Inherited nanostructures and enhanced properties. Carbon, 2014, 67(2): 250–259
https://doi.org/10.1016/j.carbon.2013.09.088
9 Y BZhao, H P Liu, C Y Li, et al.. Corrosion resistance and adhesion strength of a spin-assisted layer-by-layer assembled coating on AZ31 magnesium alloy. Applied Surface Science, 2018, 434: 787–795
https://doi.org/10.1016/j.apsusc.2017.11.012
10 L YCui, R C Zeng, S K Guan, et al.. Degradation mechanism of micro-arc oxidation coatings on biodegradable Mg‒Ca alloys: The influence of porosity. Journal of Alloys and Compounds, 2017, 695: 2464–2476
https://doi.org/10.1016/j.jallcom.2016.11.146
11 S AHutchens, R S Benson, B R Evans, et al.. Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials, 2006, 27(26): 4661–4670
https://doi.org/10.1016/j.biomaterials.2006.04.032 pmid: 16713623
12 J SCho, Y C Kang. Nano-sized hydroxyapatite powders prepared by flame spray pyrolysis. Journal of Alloys and Compounds, 2008, 464(1–2): 282–287
https://doi.org/10.1016/j.jallcom.2007.09.092
13 MYu, K Zhou, FZhang, et al.. Porous HA microspheres as drug delivery: Effects of porosity and pore structure on drug loading and in vitro release. Ceramics International, 2014, 40(8): 12617–12621
https://doi.org/10.1016/j.ceramint.2014.04.100
14 CTakai, T Hotta, SShiozaki, et al.. Unique porous microspheres with dense core and a porous layer prepared by a novel S/O/W emulsion technique. Chemical Communications, 2009, 37(37): 5533–5535
https://doi.org/10.1039/b907786c pmid: 19753347
15 ZKang, J Zhang, LNiu. A one-step hydrothermal process to fabricate superhydrophobic hydroxyapatite coatings and determination of their properties. Surface and Coatings Technology, 2018, 334: 84–89
https://doi.org/10.1016/j.surfcoat.2017.11.007
16 YSong, S Zhang, JLi, et al.. Electrodeposition of Ca‒P coatings on biodegradable Mg alloy: in vitro biomineralization behavior. Acta Biomaterialia, 2010, 6(5): 1736–1742
https://doi.org/10.1016/j.actbio.2009.12.020 pmid: 20018262
17 CTan, X Zhang, QLi. Fabrication of multifunctional CaP‒TC composite coatings and the corrosion protection they provide for magnesium alloys. Biomedical Engineering, 2017, 62(4): 375–381
https://doi.org/10.1515/bmt-2015-0247 pmid: 27718479
18 R CZeng, F Zhang, Z DLan, et al.. Corrosion resistance of calcium-modified zinc phosphate conversion coatings on magnesium‒aluminium alloys. Corrosion Science, 2014, 88(6): 452–459
https://doi.org/10.1016/j.corsci.2014.08.007
19 FLi, Q Xing, YHan, et al.. Ultrasonically assisted preparation of poly(acrylic acid)/calcium phosphate hybrid nanogels as pH-responsive drug carriers. Materials Science and Engineering C, 2017, 80: 688–697
https://doi.org/10.1016/j.msec.2017.07.022 pmid: 28866216
20 ABigi, E Boanini, GCojazzi, et al.. Morphological and structural investigation of octacalcium phosphate hydrolysis in the presence of polyacrylic acids: effect of relative molecular weights. Crystal Growth & Design, 2001, 1(3): 239–244
https://doi.org/10.1021/cg005551f
21 MKazemzadeh-Narbat, B FLai, CDing, et al.. Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials, 2013, 34(24): 5969–5977
https://doi.org/10.1016/j.biomaterials.2013.04.036 pmid: 23680363
22 Y JGuo, T Long, WChen, et al.. Bactericidal property and biocompatibility of gentamicin-loaded mesoporous carbonated hydroxyapatite microspheres. Materials Science and Engineering C, 2013, 33(7): 3583–3591
https://doi.org/10.1016/j.msec.2013.04.021 pmid: 23910253
23 JMin, R D Braatz, P T Hammond. Tunable staged release of therapeutics from layer-by-layer coatings with clay interlayer barrier. Biomaterials, 2014, 35(8): 2507–2517
https://doi.org/10.1016/j.biomaterials.2013.12.009 pmid: 24388389
24 ECom, E Boitier, J PMarchandeau, et al.. Integrated transcriptomic and proteomic evaluation of gentamicin nephrotoxicity in rats. Toxicology and Applied Pharmacology, 2012, 258(1): 124–133
https://doi.org/10.1016/j.taap.2011.10.015 pmid: 22061828
25 CGamazo, S Prior, M Concepción Lecároz, et al.. Biodegradable gentamicin delivery systems for parenteral use for the treatment of intracellular bacterial infections. Expert Opinion on Drug Delivery, 2007, 4(6): 677–688
https://doi.org/10.1517/17425247.4.6.677 pmid: 17970669
26 Z YDing, L Y Cui, R C Zeng, et al.. Exfoliation corrosion of extruded Mg‒Li‒Ca alloy. Journal of Materials Science and Technology, 2018, 34(9): 1550–1557 doi:10.1016/j.jmst.2018.05.014
27 R CZeng, L Y Cui, K Jiang, et al.. In vitro corrosion and cytocompatibility of a microarc oxidation coating and poly(L-lactic acid) composite coating on Mg‒1Li‒1Ca alloy for orthopedic implants. ACS Applied Materials & Interfaces, 2016, 8(15): 10014–10028
https://doi.org/10.1021/acsami.6b00527 pmid: 27022831
28 Q SYao, F Zhang, LSong, et al.. Corrosion resistance of a ceria/polymethyltrimethoxysilane modified Mg‒Al-layered double hydroxide on AZ31 magnesium alloy. Journal of Alloys and Compounds, 2018, 764: 913–928
https://doi.org/10.1016/j.jallcom.2018.06.152
29 YRen, H Zhou, MNabiyouni, et al.. Rapid coating of AZ31 magnesium alloy with calcium deficient hydroxyapatite using microwave energy. Materials Science and Engineering C, 2015, 49: 364–372
https://doi.org/10.1016/j.msec.2015.01.046 pmid: 25686961
30 KZhou, Y Zhang, DZhang, et al.. Porous hydroxyapatite ceramics fabricated by an ice-templating method. Scripta Materialia, 2011, 64(5): 426–429
https://doi.org/10.1016/j.scriptamat.2010.11.001
31 L YCui, X H Fang, W Cao, et al.. In vitro corrosion resistance of a layer-by-layer assembled DNA coating on magnesium alloy. Applied Surface Science, 2018, 457: 49–58
https://doi.org/10.1016/j.apsusc.2018.06.240
32 M M M G P GMantilaka, H M T G APitawala, D G G PKarunaratne, et al.. Nanocrystalline magnesium oxide from dolomite via poly(acrylate) stabilized magnesium hydroxide colloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443(4): 201–208
https://doi.org/10.1016/j.colsurfa.2013.11.020
33 LGuo, F Zhang, LSong, et al.. Corrosion resistance of ceria/polymethyltrimethoxysilane modified magnesium hydroxide coating on AZ31 magnesium alloy. Surface and Coatings Technology, 2017, 328: 121–133
https://doi.org/10.1016/j.surfcoat.2017.08.039
34 R CMoore, M J Rigali, P Brady. Selenite sorption by carbonate substituted apatite. Environmental Pollution, 2016, 218: 1102–1107
https://doi.org/10.1016/j.envpol.2016.08.063 pmid: 27592077
35 LLiu, P Li, YZou, et al.. In vitro corrosion and antibacterial performance of polysiloxane and poly(acrylic acid)/gentamicin sulfate composite coatings on AZ31 alloy. Surface and Coatings Technology, 2016, 291: 7–14
https://doi.org/10.1016/j.surfcoat.2016.02.016
36 YZhang, P Gao, LZhao, et al.. Preparation and swelling properties of a starch-g-poly(acrylic acid)/organo-mordenite hydrogel composite. Frontiers of Chemical Science and Engineering, 2016, 10(1): 147–161
https://doi.org/10.1007/s11705-015-1546-y
37 SLiao, F Watari, GXu, et al.. Morphological effects of variant carbonates in biomimetic hydroxyapatite. Materials Letters, 2007, 61(17): 3624–3628
https://doi.org/10.1016/j.matlet.2006.12.007
38 DWalsh, T Furuzono, JTanaka. Preparation of porous composite implant materials by in situ polymerization of porous apatite containing ε-caprolactone or methyl methacrylate. Biomaterials, 2001, 22(11): 1205–1212
https://doi.org/10.1016/S0142-9612(00)00268-4 pmid: 11336292
39 M HFathi, A Hanifi, VMortazavi. Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. Journal of Materials Processing Technology, 2008, 202(1–3): 536–542
https://doi.org/10.1016/j.jmatprotec.2007.10.004
40 OGeuli, N Metoki, TZada, et al.. Synthesis, coating and drug-release of hydroxyapatite nanoparticles loaded with antibiotics. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2017, 5(38): 7819–7830
https://doi.org/10.1039/C7TB02105D
41 PVenkatesan, N Puvvada, RDash, et al.. The potential of celecoxib-loaded hydroxyapatite‒chitosan nanocomposite for the treatment of colon cancer. Biomaterials, 2011, 32(15): 3794–3806
https://doi.org/10.1016/j.biomaterials.2011.01.027 pmid: 21392822
42 YZhao, L Shi, XJi, et al.. Corrosion resistance and antibacterial properties of polysiloxane modified layer-by-layer assembled self-healing coating on magnesium alloy. Journal of Colloid and Interface Science, 2018, 526: 43–50
https://doi.org/10.1016/j.jcis.2018.04.071 pmid: 29715614
43 L YCui, S D Gao, P P Li, et al.. Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31. Corrosion Science, 2017, 118: 84–95
https://doi.org/10.1016/j.corsci.2017.01.025
44 Z YDing, L Y Cui, X B Chen, et al.. In vitro corrosion of micro-arc oxidation coating on Mg‒1Li‒1Ca alloy − The influence of intermetallic compound Mg2Ca. Journal of Alloys and Compounds, 2018, 764: 250–260
https://doi.org/10.1016/j.jallcom.2018.06.073
45 NOstrowski, B Lee, DHong, et al.. Synthesis, osteoblast, and osteoclast viability of amorphous and crystalline tri-magnesium phosphate. ACS Biomaterials Science & Engineering, 2015, 1(1): 52–63
https://doi.org/10.1021/ab500073c
46 SJiang, S Cai, FZhang, et al.. Synthesis and characterization of magnesium phytic acid/apatite composite coating on AZ31 Mg alloy by microwave assisted treatment. Materials Science and Engineering C, 2018, 91: 218–227
https://doi.org/10.1016/j.msec.2018.05.041 pmid: 30033249
47 YGuo, Y Zhou, DJia. Fabrication of hydroxycarbonate apatite coatings with hierarchically porous structures. Acta Biomaterialia, 2008, 4(2): 334–342
https://doi.org/10.1016/j.actbio.2007.08.002 pmid: 17897891
48 D ARobinson, R W Griffith, D Shechtman, et al.. In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Acta Biomaterialia, 2010, 6(5): 1869–1877
https://doi.org/10.1016/j.actbio.2009.10.007 pmid: 19818422
49 ENazaruk, E Górecka, Y MOsornio, et al.. Charged additives modify drug release rates from lipidic cubic phase carriers by modulating electrostatic interactions. Journal of Electroanalytical Chemistry, 2018, 819: 269–274
https://doi.org/10.1016/j.jelechem.2017.10.057
[1] Xiang SUN, Qing-Song YAO, Yu-Chao LI, Fen ZHANG, Rong-Chang ZENG, Yu-Hong ZOU, Shuo-Qi LI. Biocorrosion resistance and biocompatibility of Mg--Al layered double hydroxide/poly(L-lactic acid) hybrid coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(4): 426-441.
[2] Lei CHANG, Xiangrui LI, Xuhui TANG, He ZHANG, Ding HE, Yujun WANG, Jiayin ZHAO, Jingan LI, Jun WANG, Shijie ZHU, Liguo WANG, Shaokang GUAN. Micro-patterned hydroxyapatite/silk fibroin coatings on Mg--Zn--Y--Nd--Zr alloys for better corrosion resistance and cell behavior guidance[J]. Front. Mater. Sci., 2020, 14(4): 413-425.
[3] Zheng-Zheng YIN, Wei HUANG, Xiang SONG, Qiang ZHANG, Rong-Chang ZENG. Self-catalytic degradation of iron-bearing chemical conversion coating on magnesium alloys ---- Influence of Fe content[J]. Front. Mater. Sci., 2020, 14(3): 296-313.
[4] Zai-Meng QIU, Fen ZHANG, Jun-Tong CHU, Yu-Chao LI, Liang SONG. Corrosion resistance and hydrophobicity of myristic acid modified Mg--Al LDH/Mg(OH)2 steam coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(1): 96-107.
[5] Mengke PENG, Fenyan HU, Minting DU, Bingjie MAI, Shurong ZHENG, Peng LIU, Changhao WANG, Yashao CHEN. Hydrothermal growth of hydroxyapatite and ZnO bilayered nanoarrays on magnesium alloy surface with antibacterial activities[J]. Front. Mater. Sci., 2020, 14(1): 14-23.
[6] Wei WU, Fen ZHANG, Yu-Chao LI, Yong-Feng ZHOU, Qing-Song YAO, Liang SONG, Rong-Chang ZENG, Sie Chin TJONG, Dong-Chu CHEN. Corrosion resistance of a silane/ceria modified Mg--Al-layered double hydroxide on AA5005 aluminum alloy[J]. Front. Mater. Sci., 2019, 13(4): 420-430.
[7] Lian GUO, Fen ZHANG, Jun-Cai LU, Rong-Chang ZENG, Shuo-Qi LI, Liang SONG, Jian-Min ZENG. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys[J]. Front. Mater. Sci., 2018, 12(2): 198-206.
[8] Ling-Yu LI, Bin LIU, Rong-Chang ZENG, Shuo-Qi LI, Fen ZHANG, Yu-Hong ZOU, Hongwei (George) JIANG, Xiao-Bo CHEN, Shao-Kang GUAN, Qing-Yun LIU. In vitro corrosion of magnesium alloy AZ31 --- a synergetic influence of glucose and Tris[J]. Front. Mater. Sci., 2018, 12(2): 184-197.
[9] Feng LI, Yang LIU, Xu-Bo LI. Dynamic recrystallization behavior of AZ31 magnesium alloy processed by alternate forward extrusion[J]. Front. Mater. Sci., 2017, 11(3): 296-305.
[10] Tao JIN,Fan-mei KONG,Rui-qin BAI,Ru-liang ZHANG. Anti-corrosion mechanism of epoxy-resin and different content Fe2O3 coatings on magnesium alloy[J]. Front. Mater. Sci., 2016, 10(4): 367-374.
[11] Li-Da HOU,Zhen LI,Yu PAN,MuhammadIqbal SABIR,Yu-Feng ZHENG,Li LI. A review on biodegradable materials for cardiovascular stent application[J]. Front. Mater. Sci., 2016, 10(3): 238-259.
[12] Yu-Hong ZOU,Rong-Chang ZENG,Qing-Zhao WANG,Li-Jun LIU,Qian-Qian XU,Chuang WANG,Zhiwei LIU. Blood compatibility of zinc–calcium phosphate conversion coating on Mg–1.33Li–0.6Ca alloy[J]. Front. Mater. Sci., 2016, 10(3): 281-289.
[13] Lan-Yue CUI,Rong-Chang ZENG,Xiao-Xiao ZHU,Ting-Ting PANG,Shuo-Qi LI,Fen ZHANG. Corrosion resistance of biodegradable polymeric layer-by-layer coatings on magnesium alloy AZ31[J]. Front. Mater. Sci., 2016, 10(2): 134-146.
[14] Yichi LIU,Debao LIU,Chen YOU,Minfang CHEN. Effects of grain size on the corrosion resistance of pure magnesium by cooling rate-controlled solidification[J]. Front. Mater. Sci., 2015, 9(3): 247-253.
[15] Xiao-Li ZHANG,Shan-Hu BAO,Yun-Chuan XIN,Xun CAO,Ping JIN. Optical switching properties of Pd--Ni thin-film top-capped switchable mirrors[J]. Front. Mater. Sci., 2015, 9(3): 227-233.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed