Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2018, Vol. 12 Issue (2) : 184-197    https://doi.org/10.1007/s11706-018-0424-1
RESEARCH ARTICLE
In vitro corrosion of magnesium alloy AZ31 --- a synergetic influence of glucose and Tris
Ling-Yu LI1, Bin LIU1, Rong-Chang ZENG1(), Shuo-Qi LI1, Fen ZHANG1, Yu-Hong ZOU3, Hongwei (George) JIANG2, Xiao-Bo CHEN2, Shao-Kang GUAN4, Qing-Yun LIU3()
1. School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266510, China
2. School of Engineering, RMIT University, Carlton 3053, Australia
3. College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
4. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
 Download: PDF(808 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Biodegradable Mg alloys have generated great interest for biomedical applications. Accurate predictions of in vivo degradation of Mg alloys through cost-effective in vitro evaluations require the latter to be conducted in an environment close to that of physiological scenarios. However, the roles of glucose and buffering agents in regulating the in vitro degradation performance of Mg alloys has not been elucidated. Herein, degradation behavior of AZ31 alloy is investigated by hydrogen evolution measurements, pH monitoring and electrochemical tests. Results indicate that glucose plays a content-dependent role in degradation of AZ31 alloy in buffer-free saline solution. The presence of a low concentration of glucose, i.e. 1.0 g/L, decreases the corrosion rate of Mg alloy AZ31, whereas the presence of 2.0 and 3.0 g/L glucose accelerates the corrosion rate during long term immersion in saline solution. In terms of Tris-buffered saline solution, the addition of glucose increases pH value and promotes pitting corrosion or general corrosion of AZ31 alloy. This study provides a novel perspective to understand the bio-corrosion of Mg alloys in buffering agents and glucose containing solutions.

Keywords magnesium alloys      corrosion      glucose      Tris      biomaterials     
Corresponding Author(s): Rong-Chang ZENG,Qing-Yun LIU   
Online First Date: 14 May 2018    Issue Date: 29 May 2018
 Cite this article:   
Ling-Yu LI,Bin LIU,Rong-Chang ZENG, et al. In vitro corrosion of magnesium alloy AZ31 --- a synergetic influence of glucose and Tris[J]. Front. Mater. Sci., 2018, 12(2): 184-197.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-018-0424-1
https://academic.hep.com.cn/foms/EN/Y2018/V12/I2/184
Fig.1  SEM and EDS analyses (wt.%) of AZ31 alloy after immersion in 0.9% NaCl solutions with different glucose contents for 120 h: (a)(b) 0 g/L glucose; (c)(d) 1.0 g/L glucose; (e)(f) 2.0 g/L glucose; (g)(h) 3.0 g/L glucose.
Spectrum Contents/(wt.% (or at.%))
C O Mg Al Si Zn Cl
#1 4.19 (6.57) 52.67 (62.03) 29.19 (22.61) 2.57 (1.80) 6.76 (5.88) 0.65 (0.19) 1.74 (0.92)
#2 3.25 (5.09) 53.18 (62.50) 32.74 (25.33) 2.49 (1.73) 6.93 (4.64) 0.15 (0.04) 1.26 (0.67)
#3 4.55 (7.10) 54.32 (62.80) 32.36 (24.62) 1.65 (1.13) 5.77 (3.80) 0.27 (0.08) 1.08 (0.56)
#4 9.86 (14.76) 52.22 (58.70) 25.63 (18.96) 2.04 (1.35) 8.24 (5.28) 0.31 (0.86) 1.70 (0.09)
#5 6.05 (9.35) 48.33 (56.05) 43.98 (33.56) 0.27 (0.18) 1.01 (0.67) 0.37 (0.19)
#6 3.73 (5.84) 51.08 (59.99) 39.89 (30.82) 1.05 (0.73) 2.61 (1.75) 1.63 (0.86)
#7 3.99 (6.07) 56.23 (64.28) 37.58 (28.27) 0.41 (0.28) 1.32 (0.86) 0.47 (0.24)
#8 8.20 (12.44) 49.16 (55.97) 39.75 (29.79) 0.83 (0.55) 1.39 (0.91) 0.67 (0.34)
#9 3.31 (5.11) 53.88 (62.45) 41.29 (31.49) 0.37 (0.25) 0.69 (0.46) 0.46 (0.24)
#10 3.64 (5.63) 54.18 (62.92) 37.89 (28.96) 1.49 (1.03) 0.92 (0.61) 0.54 (0.15) 1.32 (0.69)
#11 6.76 (10.13) 54.70 (61.51) 37.52 (27.76) 0.26 (0.18) 0.29 (0.19) 0.46 (0.23)
#12 6.48 (9.69) 55.73 (62.55) 36.62 (27.04) 0.34 (0.22) 0.61 (0.39) 0.22 (0.11)
Tab.1  Chemical compositions of spectra detected by EDS in Fig. 1 in wt.% (at.%)
Fig.2  XRD patterns of AZ31 alloy after immersion in 0.9% NaCl solutions with different glucose contents for 120 h.
Fig.3  FTIR spectra of AZ31 surface after immersion in 0.9% NaCl solution with different glucose contents for 120 h.
Fig.4  Polarization curves of AZ31 samples after immersion in 0.9% NaCl solutions with different glucose contents.
Sample Ecorr/mV vs. SCE icorr/(A·cm−2) βa/(mV·dec−1) βc/(mV·dec−1) Rp/(Ω·cm2)
0 g/L glucose −1430 2.76×10−5 182.44 108.44 1.07×106
1 g/L glucose −1459 1.51×10−5 421.34 123.53 2.74×106
2 g/L glucose −1445 2.47×10−5 270.69 122.90 1.49×106
3 g/L glucose −1459 2.91×10−5 837.12 111.88 1.47×106
Tab.2  Electrochemical parameters of PDP curves in 0.9% NaCl solutions containing various glucose contents
Fig.5  AZ31 samples immersed in 0.9% NaCl solutions with different glucose contents (0, 1.0, 2.0, and 3.0 g/L) for 120 h: (a) hydrogen evolution volumes and (b) enlarged plots; (c) variations of pH values and (d) enlarged plots.
Fig.6  SEM and EDS analyses of AZ31 alloy after immersion in 0.9% NaCl and 6.118 g/L Tris solutions with different glucose contents for 18 h: (a)(b)(c) 0 g/L glucose; (d)(e)(f) 1 g/L glucose; (g)(h)(i) 2 g/L glucose; (j)(k)(l) 3 g/L glucose. The EDS was organized by wt.%.
Fig.7  XRD patterns of AZ31 surface after immersion in Tris-buffered saline solutions with different glucose contents for 18 h.
Fig.8  FTIR spectra of AZ31 surface after immersion in Tris-buffered saline solutions with different glucose contents for 18 h.
Fig.9  Polarization curves of AZ31 samples after immersion in Tris-buffered saline solutions with different glucose concentrations.
Sample Ecorr/mV vs. SCE icorr/(A·cm−2) βa/(mV·dec−1) βc/(mV·dec−1) Rp/(Ω·cm2)
Tris+ 0 g/L glucose −1405 3.10×10−6 304.40 142.90 1.36×107
Tris+ 1 g/L glucose −1413 5.74×10−6 249.41 128.94 6.42×106
Tris+ 2 g/L glucose −1428 1.01×10−5 47.15 173.12 1.59×106
Tris+ 3 g/L glucose −1443 1.06×10−5 32.21 157.63 1.09×106
Tab.3  Electrochemical parameters of PDP curves in Tris-buffered saline solutions with different glucose concentrations
Fig.10  (a) Hydrogen evolution volume and (b) pH values as a function of time for AZ31 samples immersed in Tris-buffered saline solutions with different glucose contents (0, 1.0, 2.0, and 3.0 g/L) for 18 h.
Fig.11  Two types of schematic illustration of corrosion process of AZ31 alloy during exposure to 0.9% NaCl solution with different glucose contents: (a) initial corrosion of AZ31 alloy in neat 0.9% NaCl solution; (b) 0.9% NaCl solution containing 1.0 g/L glucose; (c) 0.9% NaCl solution containing 2.0 and 3.0 g/L glucose.
Fig.12  Schematic illustration of corrosion process of AZ31 alloy during exposure to Tris-buffered saline solutions with glucose: (a) initial corrosion of AZ31 alloy in Tris-buffered saline solution; (b) Tris-buffered saline solution containing 1.0, 2.0 and 3.0 g/L glucose.
Fig.13  Cross-sectional images and corresponding EDS spectra of degradation products formed on AZ31 alloy surface for two kinds of solutions of various glucose contents: (a)(b) 0 g/L glucose, (c)(d) 1.0 g/L glucose, (e)(f) 2.0 g/L glucose, (g)(h) 3.0 g/L glucose in saline solution; (i)(j) 0 g/L glucose, (k)(l) 1.0 g/L glucose, (m)(n) 2.0 g/L glucose, (o)(p) 3.0 g/L glucose in Tris-buffered saline solutions.
Fig.14  Histogram in comparison with pH value (13 h), HE (13 h), icorr and potential between saline solution and Tris-buffered saline solution with and without glucose.
1 Zheng Y F, Gu X N, Witte F. Biodegradable metals. Materials Science and Engineering R: Reports, 2014, 77(2): 1–34
https://doi.org/10.1016/j.mser.2014.01.001
2 Zeng R C, Qi W C, Cui H Z, et al.. In vitro corrosion of as-extruded Mg–Ca alloys — The influence of Ca concentration. Corrosion Science, 2015, 96: 23–31
https://doi.org/10.1016/j.corsci.2015.03.018
3 Witte F, Kaese V, Haferkamp H, et al.. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 2005, 26(17): 3557–3563
https://doi.org/10.1016/j.biomaterials.2004.09.049 pmid: 15621246
4 Ascencio M, Pekguleryuz M, Omanovic S. An investigation of the corrosion mechanisms of WE43 Mg alloy in a modified simulated body fluid solution: The effect of electrolyte renewal. Corrosion Science, 2015, 91(5): 297–310
https://doi.org/10.1016/j.corsci.2014.11.034
5 Li Y, Cai S, Xu G, et al.. Synthesis and characterization of a phytic acid/mesoporous 45S5 bioglass composite coating on a magnesium alloy and degradation behavior. RSC Advances, 2015, 5(33): 25708–25716
https://doi.org/10.1039/C5RA00087D
6 Zeng R C, Cui L Y, Jiang K, et al.. In vitro corrosion and cytocompatibility of a microarc oxidation coating and poly(L-lactic acid) composite coating on Mg–1Li–1Ca alloy for orthopedic implants. ACS Applied Materials & Interfaces, 2016, 8(15): 10014–10028
https://doi.org/10.1021/acsami.6b00527 pmid: 27022831
7 Gu X N, Zhou W R, Zheng Y F, et al.. Corrosion fatigue behaviors of two biomedical Mg alloys – AZ91D and WE43 – in simulated body fluid. Acta Biomaterialia, 2010, 6(12): 4605–4613
https://doi.org/10.1016/j.actbio.2010.07.026 pmid: 20656074
8 Jin W, Wu G, Feng H, et al.. Improvement of corrosion resistance and biocompatibility of rare-earth WE43 magnesium alloy by neodymium self-ion implantation. Corrosion Science, 2015, 94(Supplement C): 142–155
https://doi.org/10.1016/j.corsci.2015.01.049
9 Liu X, Yang Q, Li Z, et al.. A combined coating strategy based on atomic layer deposition for enhancement of corrosion resistance of AZ31 magnesium alloy. Applied Surface Science, 2018, 434: 1101–1111
https://doi.org/10.1016/j.apsusc.2017.11.032
10 Walter R, Kannan M B, He Y, et al.. Effect of surface roughness on the in vitro degradation behaviour of a biodegradable magnesium-based alloy. Applied Surface Science, 2013, 279(Supplement C): 343–348
https://doi.org/10.1016/j.apsusc.2013.04.096
11 Cipriano A F, Sallee A, Tayoba M, et al.. Cytocompatibility and early inflammatory response of human endothelial cells in direct culture with Mg–Zn–Sr alloys. Acta Biomaterialia, 2017, 48(Supplement C): 499–520
https://doi.org/10.1016/j.actbio.2016.10.020 pmid: 27746360
12 Shi Y, Zhang L, Chen J, et al.. In vitro and in vivo degradation of rapamycin-eluting Mg–Nd–Zn–Zr alloy stents in porcine coronary arteries. Materials Science and Engineering C, 2017, 80(Supplement C): 1–6
https://doi.org/10.1016/j.msec.2017.05.124 pmid: 28866142
13 Chang W H, Qu B, Liao A D, et al.. In vitro biocompatibility and antibacterial behavior of anodic coatings fabricated in an organic phosphate containing solution on Mg–1.0Ca alloys. Surface and Coatings Technology, 2016, 289: 75–84
https://doi.org/10.1016/j.surfcoat.2016.01.052
14 Wang X J, Xu D K, Wu R Z, et al.. What is going on in magnesium alloys? Journal of Materials Science and Technology, 2018, 34(2): 245–247
https://doi.org/10.1016/j.jmst.2017.07.019
15 Wang L, Shinohara T, Zhang B P. Influence of chloride, sulfate and bicarbonate anions on the corrosion behavior of AZ31 magnesium alloy. Journal of Alloys and Compounds, 2010, 496(1–2): 500–507
https://doi.org/10.1016/j.jallcom.2010.02.088
16 Cipriano A F, Sallee A, Guan R G, et al.. A comparison study on the degradation and cytocompatibility of Mg–4Zn–xSr alloys in direct culture. ACS Biomaterials Science & Engineering, 2017, 3(4): 540–550
17 Xin Y, Hu T, Chu P K. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomaterialia, 2011, 7(4): 1452–1459
https://doi.org/10.1016/j.actbio.2010.12.004 pmid: 21145436
18 Zhen Z, Zheng Y, Ge Z, et al.. Biological effect and molecular mechanism study of biomaterials based on proteomic research. Journal of Materials Science and Technology, 2017, 33(7): 607–615
https://doi.org/10.1016/j.jmst.2017.01.001
19 Cui L Y, Sun L, Zeng R C, et al.. In vitro degradation and biocompatibility of Mg–Li–Ca alloys — The influence of Li content. Science China Materials, 2018, 61(4): 607–618
20 Wang J L, Mukherjee S, Nisbet D R, et al.. In vitro evaluation of biodegradable magnesium alloys containing micro-alloying additions of strontium, with and without zinc. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2015, 3(45): 8874–8883
https://doi.org/10.1039/C5TB01516B
21 Hou L, Li Z, Zhao H, et al.. Microstructure, mechanical properties, corrosion behavior and biocompatibility of as-extruded biodegradable Mg–3Sn–1Zn–0.5Mn alloy. Journal of Materials Science and Technology, 2016, 32(9): 874–882
https://doi.org/10.1016/j.jmst.2016.07.004
22 Li C Q, Xu D K, Yu S, et al.. Effect of icosahedral phase on crystallographic texture and mechanical anisotropy of Mg–4%Li based alloys. Journal of Materials Science and Technology, 2017, 33(5): 475–480
https://doi.org/10.1016/j.jmst.2016.10.003
23 Jia H, Feng X, Yang Y. Microstructure and corrosion resistance of directionally solidified Mg–2 wt.% Zn alloy. Corrosion Science, 2017, 120: 75–81
https://doi.org/10.1016/j.corsci.2017.02.023
24 Zeng R C, Qi W C, Cui H Z, et al.. In vitro corrosion of as-extruded Mg–Ca alloys — The influence of Ca concentration. Corrosion Science, 2015, 96: 23–31
https://doi.org/10.1016/j.corsci.2015.03.018
25 Jiang H, Li F, Zeng X. Microstructural characteristics and deformation of magnesium alloy AZ31 produced by continuous variable cross-section direct extrusion. Journal of Materials Science and Technology, 2017, 33(6): 573–579
https://doi.org/10.1016/j.jmst.2017.01.003
26 Li C Q, Xu D K, Wang B J, et al.. Suppressing effect of heat treatment on the Portevin–Le Chatelier phenomenon of Mg–4%Li–6%Zn–1.2%Y alloy. Journal of Materials Science and Technology, 2016, 32(12): 1232–1238
https://doi.org/10.1016/j.jmst.2016.09.018
27 Feng H, Liu S, Du Y, et al.. Effect of the second phases on corrosion behavior of the Mg–Al–Zn alloys. Journal of Alloys and Compounds, 2017, 695: 2330–2338
https://doi.org/10.1016/j.jallcom.2016.11.100
28 Jia Z, Xiong P, Shi Y, et al.. Inhibitor encapsulated, self-healable and cytocompatible chitosan multilayer coating on biodegradable Mg alloy: a pH-responsive design. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2016, 4(14): 2498– 2511
https://doi.org/10.1039/C6TB00117C
29 Cui L Y, Zeng R C, Zhu X X, et al.. Corrosion resistance of biodegradable polymeric layer-by-layer coatings on magnesium alloy AZ31. Frontiers of Materials Science, 2016, 10(2): 134–146
https://doi.org/10.1007/s11706-016-0332-1
30 Chen J Y, Chen X B, Li J L, et al.. Electrosprayed PLGA smart containers for active anti-corrosion coating on magnesium alloy AMlite. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(16): 5738–5743
https://doi.org/10.1039/c3ta14999d
31 Wan P, Tan L, Yang K. Surface modification on biodegradable magnesium alloys as orthopedic implant materials to improve the bio-adaptability: A review. Journal of Materials Science and Technology, 2016, 32(9): 827–834
https://doi.org/10.1016/j.jmst.2016.05.003
32 Merino M C, Pardo A, Arrabal R, et al.. Influence of chloride ion concentration and temperature on the corrosion of Mg–Al alloys in salt fog. Corrosion Science, 2010, 52(5): 1696–1704
https://doi.org/10.1016/j.corsci.2010.01.020
33 Cui L Y, Gao S D, Li P P, et al.. Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31. Corrosion Science, 2017, 118: 84–95
https://doi.org/10.1016/j.corsci.2017.01.025
34 Song Y, Shan D, Han E H. Pitting corrosion of a Rare Earth Mg alloy GW93. Journal of Materials Science and Technology, 2017, 33(9): 954–960
https://doi.org/10.1016/j.jmst.2017.01.014
35 Wen C L, Guan S K, Peng L, et al.. Characterization and degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant applications. Applied Surface Science, 2009, 255(13–14): 6433–6438
https://doi.org/10.1016/j.apsusc.2008.09.078
36 Zeng R C, Hu Y, Guan S K, et al.. Corrosion of magnesium alloy AZ31: The influence of bicarbonate, sulphate, hydrogen phosphate and dihydrogen phosphate ions in saline solution. Corrosion Science, 2014, 86(10): 171–182
https://doi.org/10.1016/j.corsci.2014.05.006
37 Walker J, Shadanbaz S, Kirkland N T, et al.. Magnesium alloys: Predicting in vivo corrosion with in vitro immersion testing. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2012, 100(4): 1134–1141
https://doi.org/10.1002/jbm.b.32680 pmid: 22331609
38 Guo L, Zhang F, Song L, et al.. Corrosion resistance of ceria/polymethyltrimethoxysilane modified magnesium hydroxide coating on AZ31 magnesium alloy. Surface and Coatings Technology, 2017, 328: 121–133
https://doi.org/10.1016/j.surfcoat.2017.08.039
39 Sales C H, Pedrosa L F, Lima J G, et al.. Influence of magnesium status and magnesium intake on the blood glucose control in patients with type 2 diabetes. Clinical Nutrition, 2011, 30(3): 359–364
https://doi.org/10.1016/j.clnu.2010.12.011 pmid: 21288611
40 Hruby A, Meigs J B, O’Donnell C J, et al.. Higher magnesium intake reduces risk of impaired glucose and insulin metabolism and progression from prediabetes to diabetes in middle-aged Americans. American Journal of Diseases of Children, 2014, 37(2): 419–427
https://doi.org/10.2337/dc13-1397 pmid: 24089547
41 Zeng R C, Li X T, Li S Q, et al.. In vitro degradation of pure Mg in response to glucose. Scientific Reports, 2015, 5(1): 13026
https://doi.org/10.1038/srep13026 pmid: 26264413
42 Cui L Y, Li X T, Zeng R C, et al.. In vitro corrosion of Mg–Ca alloy — The influence of glucose content. Frontiers of Materials Science, 2017, 11(3): 284–295
https://doi.org/10.1007/s11706-017-0391-y
43 Wang Y, Cui L Y, Zeng R C, et al.. In vitro degradation of pure magnesium — the effects of glucose and/or amino acid. Materials, 2017, 10(7): 725
https://doi.org/10.3390/ma10070725 pmid: 28773085
44 Kannan M B, Khakbaz H, Yamamoto A. Understanding the influence of HEPES buffer concentration on the biodegradation of pure magnesium: An electrochemical study. Materials Chemistry and Physics, 2017, 197: 47–56
https://doi.org/10.1016/j.matchemphys.2017.05.024
45 Cui L Y, Hu Y, Zeng R C, et al.. New insights into the effect of Tris-HCl and Tris on corrosion of magnesium alloy in presence of bicarbonate, sulfate, hydrogen phosphate and dihydrogen phosphate ions. Journal of Materials Science and Technology, 2017, 33(9): 971–986
https://doi.org/10.1016/j.jmst.2017.01.005
46 Kirkland N T, Waterman J, Birbilis N, et al.. Buffer-regulated biocorrosion of pure magnesium. Journal of Materials Science: Materials in Medicine, 2012, 23(2): 283–291
https://doi.org/10.1007/s10856-011-4517-y pmid: 22190196
47 Xin Y, Chu P K. Influence of Tris in simulated body fluid on degradation behavior of pure magnesium. Materials Chemistry and Physics, 2010, 124(1): 33–35
https://doi.org/10.1016/j.matchemphys.2010.07.010
48 Zeng R C, Cui L Y, Jiang K, et al.. In vitro corrosion and cytocompatibility of a microarc oxidation coating and poly(L-lactic acid) composite coating on Mg–1Li–1Ca alloy for orthopedic implants. ACS Applied Materials & Interfaces, 2016, 8(15): 10014–10028
https://doi.org/10.1021/acsami.6b00527 pmid: 27022831
49 Zhao Y B, Liu H P, Li C Y, et al.. Corrosion resistance and adhesion strength of a spin-assisted layer-by-layer assembled coating on AZ31 magnesium alloy. Applied Surface Science, 2018, 434: 787–795
https://doi.org/10.1016/j.apsusc.2017.11.012
50 Lin X, Tan L, Zhang Q, et al.. The in vitro degradation process and biocompatibility of a ZK60 magnesium alloy with a forsterite-containing micro-arc oxidation coating. Acta Biomaterialia, 2013, 9(10): 8631–8642
https://doi.org/10.1016/j.actbio.2012.12.016 pmid: 23261923
51 Cui Z, Li X, Xiao K, et al.. Atmospheric corrosion of field-exposed AZ31 magnesium in a tropical marine environment. Corrosion Science, 2013, 76(Supplement C): 243–256
https://doi.org/10.1016/j.corsci.2013.06.047
52 Zeng R C, Li X T, Liu L J, et al.. In vitro degradation of pure Mg for esophageal stent in artificial saliva. Journal of Materials Science and Technology, 2016, 32(5): 437–444
https://doi.org/10.1016/j.jmst.2016.02.007
53 Zong Y, Yuan G, Zhang X, et al.. Comparison of biodegradable behaviors of AZ31 and Mg–Nd–Zn–Zr alloys in Hank’s physiological solution. Materials Science and Engineering B, 2012, 177(5): 395–401
https://doi.org/10.1016/j.mseb.2011.09.042
54 Shahabi-Navid M, Esmaily M, Svensson J E, et al.. NaCl-induced atmospheric corrosion of the MgAl alloy AM50 — The influence of CO2. Clinical and Experimental Immunology, 2014, 161(6): C277–C287
55 Esmaily M, Shahabi-Navid M, Svensson J E, et al.. Influence of temperature on the atmospheric corrosion of the Mg–Al alloy AM50. Corrosion Science, 2015, 90(Supplement C): 420–433
https://doi.org/10.1016/j.corsci.2014.10.040
56 Rashidian M, Fattahi A. Comparison of thermochemistry of aspartame (artificial sweetener) and glucose. Carbohydrate Research, 2009, 344(1): 127–133
https://doi.org/10.1016/j.carres.2008.09.020 pmid: 18992876
[1] Xiang SUN, Qing-Song YAO, Yu-Chao LI, Fen ZHANG, Rong-Chang ZENG, Yu-Hong ZOU, Shuo-Qi LI. Biocorrosion resistance and biocompatibility of Mg--Al layered double hydroxide/poly(L-lactic acid) hybrid coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(4): 426-441.
[2] Zheng-Zheng YIN, Wei HUANG, Xiang SONG, Qiang ZHANG, Rong-Chang ZENG. Self-catalytic degradation of iron-bearing chemical conversion coating on magnesium alloys ---- Influence of Fe content[J]. Front. Mater. Sci., 2020, 14(3): 296-313.
[3] Huan-Yan XU, Dan LU, Xu HAN. Graphene-induced enhanced anticorrosion performance of waterborne epoxy resin coating[J]. Front. Mater. Sci., 2020, 14(2): 211-220.
[4] Zai-Meng QIU, Fen ZHANG, Jun-Tong CHU, Yu-Chao LI, Liang SONG. Corrosion resistance and hydrophobicity of myristic acid modified Mg--Al LDH/Mg(OH)2 steam coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(1): 96-107.
[5] Mengke PENG, Fenyan HU, Minting DU, Bingjie MAI, Shurong ZHENG, Peng LIU, Changhao WANG, Yashao CHEN. Hydrothermal growth of hydroxyapatite and ZnO bilayered nanoarrays on magnesium alloy surface with antibacterial activities[J]. Front. Mater. Sci., 2020, 14(1): 14-23.
[6] Wei WU, Fen ZHANG, Yu-Chao LI, Yong-Feng ZHOU, Qing-Song YAO, Liang SONG, Rong-Chang ZENG, Sie Chin TJONG, Dong-Chu CHEN. Corrosion resistance of a silane/ceria modified Mg--Al-layered double hydroxide on AA5005 aluminum alloy[J]. Front. Mater. Sci., 2019, 13(4): 420-430.
[7] Xiao-Jing JI, Qiang CHENG, Jing WANG, Yan-Bin ZHAO, Zhuang-Zhuang HAN, Fen ZHANG, Shuo-Qi LI, Rong-Chang ZENG, Zhen-Lin WANG. Corrosion resistance and antibacterial effects of hydroxyapatite coating induced by polyacrylic acid and gentamicin sulfate on magnesium alloy[J]. Front. Mater. Sci., 2019, 13(1): 87-98.
[8] Lian GUO, Fen ZHANG, Jun-Cai LU, Rong-Chang ZENG, Shuo-Qi LI, Liang SONG, Jian-Min ZENG. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys[J]. Front. Mater. Sci., 2018, 12(2): 198-206.
[9] Lan-Yue CUI, Xiao-Ting LI, Rong-Chang ZENG, Shuo-Qi LI, En-Hou HAN, Liang SONG. In vitro corrosion of Mg--Ca alloy --- The influence of glucose content[J]. Front. Mater. Sci., 2017, 11(3): 284-295.
[10] Tao JIN,Fan-mei KONG,Rui-qin BAI,Ru-liang ZHANG. Anti-corrosion mechanism of epoxy-resin and different content Fe2O3 coatings on magnesium alloy[J]. Front. Mater. Sci., 2016, 10(4): 367-374.
[11] Xuran GUO,Kaile ZHANG,Mohamed EL-AASSAR,Nanping WANG,Hany EL-HAMSHARY,Mohamed EL-NEWEHY,Qiang FU,Xiumei MO. The comparison of the Wnt signaling pathway inhibitor delivered electrospun nanoyarn fabricated with two methods for the application of urethroplasty[J]. Front. Mater. Sci., 2016, 10(4): 346-357.
[12] Lan-Yue CUI,Rong-Chang ZENG,Xiao-Xiao ZHU,Ting-Ting PANG,Shuo-Qi LI,Fen ZHANG. Corrosion resistance of biodegradable polymeric layer-by-layer coatings on magnesium alloy AZ31[J]. Front. Mater. Sci., 2016, 10(2): 134-146.
[13] Rong-Chang ZENG,Xiao-Ting LI,Zhen-Guo LIU,Fen ZHANG,Shuo-Qi LI,Hong-Zhi CUI. Corrosion resistance of Zn–Al layered double hydroxide/ poly(lactic acid) composite coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2015, 9(4): 355-365.
[14] Yichi LIU,Debao LIU,Chen YOU,Minfang CHEN. Effects of grain size on the corrosion resistance of pure magnesium by cooling rate-controlled solidification[J]. Front. Mater. Sci., 2015, 9(3): 247-253.
[15] Yan JIANG,Jun-Feng YANG,Qian-Feng FANG. Effect of chromium content on microstructure and corrosion behavior of W--Cr--C coatings prepared on tungsten substrate[J]. Front. Mater. Sci., 2015, 9(1): 77-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed