Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2019, Vol. 13 Issue (4) : 420-430    https://doi.org/10.1007/s11706-019-0476-x
RESEARCH ARTICLE
Corrosion resistance of a silane/ceria modified Mg--Al-layered double hydroxide on AA5005 aluminum alloy
Wei WU1, Fen ZHANG1(), Yu-Chao LI2, Yong-Feng ZHOU1, Qing-Song YAO1, Liang SONG1(), Rong-Chang ZENG1,3, Sie Chin TJONG4, Dong-Chu CHEN5
1. College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2. School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
3. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
4. Department of Physics, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
5. School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China
 Download: PDF(3255 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The present work aimed at assessing the electrochemical behavior and the corrosion inhibition performance of Mg--Al-layered double hydroxide (LDH) coatings modified with methyltrimethoxysilane (MTMS) and cerium nitrate on AA5005 aluminum alloy. The chemical compositions and surface morphologies of the coatings were investigated by XRD, FT-IR and FE-SEM, while their corrosion resistance was evaluated by electrochemical and immersion tests. An optimum corrosion resistance of the composite coatings was obtained by adding 10−2 mol·L−1 cerium nitrate. An excess addition of cerium nitrate resulted in a loose structure and poor corrosion resistance of the coating. The corrosion mechanism of the composite coatings was proposed and discussed.

Keywords aluminum alloy      layered double hydroxide      polymer coating      cerium oxide      corrosion resistance     
Corresponding Author(s): Fen ZHANG,Liang SONG   
Online First Date: 01 November 2019    Issue Date: 04 December 2019
 Cite this article:   
Wei WU,Fen ZHANG,Yu-Chao LI, et al. Corrosion resistance of a silane/ceria modified Mg--Al-layered double hydroxide on AA5005 aluminum alloy[J]. Front. Mater. Sci., 2019, 13(4): 420-430.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-019-0476-x
https://academic.hep.com.cn/foms/EN/Y2019/V13/I4/420
Fig.1  SEM morphologies and selected point locations for EDS chemical analysis: (a) LDH coating; (b) LDH/PMTMS coating; (c) LDH/PMTMS-CeO2-1 coating; (d) LDH/PMTMS-CeO2-2 coating; (e) LDH/PMTMS-CeO2-3 coating; (f) LDH/PMTMS-CeO2-4 coating.
Point Elemental composition/at.%
Al Mg O C Si Ce Total
1 38.18 54.21 7.61 ? ? ? 100
2 38.02 56.47 5.51 ? ? ? 100
3 20.14 35.66 10.94 6.01 27.25 ? 100
4 29.48 43.17 7.26 5.57 14.52 ? 100
5 21.45 32.26 11.59 5.94 28.76 ? 100
6 24.73 36.44 10.24 5.12 23.47 ? 100
7 22.83 33.87 10.76 6.11 26.41 0.02 100
8 20.43 31.45 11.92 6.42 29.75 0.03 100
9 18.31 27.64 14.43 6.83 32.61 0.18 100
10 17.49 23.08 14.81 6.42 37.91 0.22 100
11 22.49 33.72 10.97 6.02 24.92 1.89 100
12 28.79 40.16 9.48 5.12 15.39 1.06 100
Tab.1  Elemental compositions of selected points on LDH and composite coatings as shown in Fig. 1
Fig.2  XRD patterns of alloy substrate (a), LDH coating (b), LDH/PMTMS coating (c), LDH/PMTMS-CeO2-1 coating (d), LDH/PMTMS-CeO2-2 coating (e), LDH/PMTMS-CeO2-3 coating (f) and LDH/PMTMS-CeO2-4 coating (g).
Fig.3  FT-IR spectra of LDH coating, LDH/PMTMS coating, LDH/PMTMS-CeO2-1 coating, LDH/PMTMS-CeO2-2 coating, LDH/PMTMS-CeO2-3 coating and LDH/PMTMS-CeO2-4 coating.
Fig.4  Polarization curves of alloy substrate (a), LDH coating (b), LDH/PMTMS coating (c), LDH/PMTMS-CeO2-1 coating (d), LDH/PMTMS-CeO2-2 coating (e), LDH/PMTMS-CeO2-3 coating (f) and LDH/PMTMS-CeO2-4 coating (g).
Sample βa/(mV?dec−1) βc/(mV?dec−1) Ecorr/V a) icorr/(A?cm−2) Rp/(Ω?cm2)
Substrate 32.211 115.173 −1.345 6.269×10−4 3.268×102
LDH coating 228.108 193.236 −1.284 4.133×10−5 4.544×103
LDH/PMTMS 325.159 180.283 −1.167 8.881×10−6 1.058×106
LDH/PMTMS-CeO2-1 301.426 379.423 −0.987 1.145×10−6 5.272×106
LDH/PMTMS-CeO2-2 203.157 121.825 −0.834 5.324×10−7 1.052×108
LDH/PMTMS-CeO2-3 124.274 153.923 −0.657 6.218×10−8 7.856×108
LDH/PMTMS-CeO2-4 157.245 159.351 −1.134 6.791×10−6 5.061×106
Tab.2  Electrochemical parameters determined from the polarization curves of samples as shown in Fig. 4
Fig.5  (a) Nyquist plots, (b)(c) enlarged Nyquist plots and (d) Bode plots of ?Z? vs. frequency: alloy substrate (I); LDH coating (II); LDH/PMTMS coating (III); LDH/PMTMS-CeO2-1 coating (IV); LDH/PMTMS-CeO2-2 coating (V); LDH/PMTMS-CeO2-3 coating (VI); LDH/PMTMS-CeO2-4 coating (VII).
Fig.6  SEM images of (a) LDH coating, (b) LDH/PMTMS coating, (c) LDH/PMTMS-CeO2-1 coating, (d) LDH/PMTMS-CeO2-2 coating, (e) LDH/PMTMS-CeO2-3 coating and (f) LDH/PMTMS-CeO2-4 coating after immersion in 3.5 wt.% NaCl solution for 336 h.
Fig.7  Bar graphs of LDH coating and composite coatings showing the elemental composition of coated samples after immersion in 3.5 wt.% NaCl solution for 336 h. EDS analyses were performed at Points 1, 2, 3, 4, 5 and 6 in Fig. 6.
Fig.8  XRD patterns of LDH coating and composite coatings after immersion in 3.5 wt.% NaCl solution for 336 h.
Fig.9  Water contact angle images and values of (a) alloy substrate, (b) LDH coating, (c) LDH/PMTMS coating, (d) LDH/PMTMS-CeO2-1 coating, (e) LDH/PMTMS-CeO2-2 coating, (f) LDH/PMTMS-CeO2-3 coating and (g) LDH/PMTMS-CeO2-4 coating.
Fig.10  Schematic representation and corrosion mechanism of coated samples: (a)(b)(c) LDH coatings; (d)(e)(f) LDH/PMTMS coatings; (g)(h)(i) LDH/PMTMS-CeO2 coatings.
Sample Water contact angle/(° ) icorr/(A?cm−2)
Al-LDH/PMTMS-CeO2 148 6.218×10−8
Mg-LDH/PMTMS-CeO2 151 1.217×10−10
Tab.3  Water contact angles and icorr of LDH/PMTMS-CeO2 coatings on Al alloy and Mg alloy
1 B G Prakashaiah, D V Kumara, A A Pandith, et al.. Corrosion inhibition of 2024-T3 aluminum alloy in 3.5% NaCl by thiosemicarbazone derivatives. Corrosion Science, 2018, 136: 326–338
https://doi.org/10.1016/j.corsci.2018.03.021
2 J Lan, X J Shen, J Liu, et al.. Strengthening mechanisms of 2A14 aluminum alloy with cold deformation prior to artificial aging. Materials Science and Engineering A, 2019, 745: 517–535
https://doi.org/10.1016/j.msea.2018.12.051
3 X X Dong, H L Yang, X Z Zhu, et al.. High strength and ductility aluminium alloy processed by high pressure die casting. Journal of Alloys and Compounds, 2019, 773: 86–96
https://doi.org/10.1016/j.jallcom.2018.09.260
4 N Trejo Rivera, J Torres Torres, A Flores Valdés. A-242 aluminium alloy foams manufacture from the recycling of beverage cans. Metals, 2019, 9(1): 92
https://doi.org/10.3390/met9010092
5 B Murugan, G Thirunavukarasu, S Kundu, et al.. Influence of tool traverse speed on structure, mechanical properties, fracture behavior, and weld corrosion of friction stir welded joints of aluminum and stainless steel. Advanced Engineering Materials, 2019, 21(2): 1800869
https://doi.org/10.1002/adem.201800869
6 K M Xue, B X T Wang, S L Yan, et al.. Strain-induced dissolution and precipitation of secondary phases and synergetic stengthening mechanisms of Al–Zn–Mg–Cu alloy during ECAP. Advanced Engineering Materials, 2019, 21(4): 1801182
https://doi.org/10.1002/adem.201801182
7 G Luciano, A Brinkmann, S Mahanty, et al.. Development and evaluation of an eco-friendly hybrid epoxy-silicon coating for the corrosion protection of aluminium alloys. Progress in Organic Coatings, 2017, 110: 78–85
https://doi.org/10.1016/j.porgcoat.2017.04.028
8 A Astarita, F Rubino, P Carlone, et al.. On the improvement of AA2024 wear properties through the deposition of a cold-sprayed titanium coating. Metals, 2016, 6(8): 185
https://doi.org/10.3390/met6080185
9 N Souissi, S Souissi, C Niniven, et al.. Optimization of squeeze casting parameters for 2017 A wrought Al alloy using Taguchi method. Metals, 2014, 4(2): 141–154
https://doi.org/10.3390/met4020141
10 C Y Li, X L Fan, R C Zeng, et al.. Corrosion resistance of in-situ growth of nano-sized Mg(OH)2 on micro-arc oxidized magnesium alloy AZ31 — Influence of EDTA. Journal of Materials Science and Technology, 2019, 35(6): 1088–1098
https://doi.org/10.1016/j.jmst.2019.01.006
11 Y B Zhao, Z Zhang, L Q Shi, et al.. Corrosion resistance of a self-healing multilayer film based on SiO2 and CeO2 nanoparticles layer-by-layer assembly on Mg alloys. Electronic Materials Letters, 2019, 237: 14–18
https://doi.org/10.1016/j.matlet.2018.11.069
12 L H Yang, Y X Wan, Z L Qin, et al.. Fabrication and corrosion resistance of a graphene–tin oxide composite film on aluminium alloy 6061. Corrosion Science, 2018, 130: 85–94
https://doi.org/10.1016/j.corsci.2017.10.031
13 F Zhang, C L Zhang, L Song, et al.. Corrosion resistance of superhydrophobic Mg–Al layered double hydroxide coatings on aluminum alloys. Acta Metallurgica Sinica (English Letters), 2015, 28(11): 1373–1381
https://doi.org/10.1007/s40195-015-0335-4
14 Y Zhang, Y D Li, Y S Ren, et al.. Double-doped LDH films on aluminum alloys for active protection. Electronic Materials Letters, 2017, 192: 33–35
https://doi.org/10.1016/j.matlet.2017.01.038
15 L Guo, F Zhang, J C Lu, et al.. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys. Frontiers of Materials Science, 2018, 12(2): 198–206
https://doi.org/10.1007/s11706-018-0415-2
16 H Hayatdavoudi, M Rahsepar. Smart inhibition action of layered double hydroxide nanocontainers in zinc-rich epoxy coating for active corrosion protection of carbon steel substrate. Journal of Alloys and Compounds, 2017, 711: 560–567
https://doi.org/10.1016/j.jallcom.2017.04.044
17 Z Cao, N N M Adnan, G Wang, et al.. Enhanced colloidal stability and protein resistance of layered double hydroxide nanoparticles with phosphonic acid-terminated PEG coating for drug delivery. Journal of Colloid and Interface Science, 2018, 521: 242–251
https://doi.org/10.1016/j.jcis.2018.03.006 pmid: 29574343
18 T Stimpfling, F Leroux, H Hintze-Bruening. Organo-modified layered double hydroxide in coating formulation to protect AA2024 from corrosion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 458: 147–154
https://doi.org/10.1016/j.colsurfa.2014.01.042
19 F Zhang, L Zhao, H Chen, et al.. Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum. Angewandte Chemie International Edition, 2008, 47(13): 2466–2469
https://doi.org/10.1002/anie.200704694 pmid: 18288662
20 J Tedim, A Kuznetsova, A N Salak, et al.. Zn–Al layered double hydroxides as chloride nanotraps in active protective coatings. Corrosion Science, 2012, 55: 1–4
https://doi.org/10.1016/j.corsci.2011.10.003
21 C X Zhang, X H Luo, X Y Pan, et al.. Self-healing Li–Al layered double hydroxide conversion coating modified with aspartic acid for 6N01 Al alloy. Applied Surface Science, 2017, 394: 275–281
https://doi.org/10.1016/j.apsusc.2016.10.034
22 F Zhang, Z G Liu, R C Zeng, et al.. Corrosion resistance of Mg–Al-LDH coating on magnesium alloy AZ31. Surface and Coatings Technology, 2014, 258: 1152–1158
https://doi.org/10.1016/j.surfcoat.2014.07.017
23 L Hao, T T Yan, Y M Zhang, et al.. Fabrication and anticorrosion properties of composite films of silica/layered double hydroxide. Surface and Coatings Technology, 2017, 326: 200–206
https://doi.org/10.1016/j.surfcoat.2017.06.024
24 T Stimpfling, F Leroux, H Hintze-Bruening. Unraveling EDTA corrosion inhibition when interleaved into layered double hydroxide epoxy filler system coated onto aluminum AA 2024. Applied Clay Science, 2013, 83–84: 32–41
https://doi.org/10.1016/j.clay.2013.08.005
25 M Pantoja, B Díaz-Benito, F Velasco, et al.. Analysis of hydrolysis process of γ-methacryloxypropyltrimethoxysilane and its influence on the formation of silane coatings on 6063 aluminum alloy. Applied Surface Science, 2009, 255(12): 6386–6390
https://doi.org/10.1016/j.apsusc.2009.02.022
26 J S Zhao, Y Tian, A F Liu, et al.. The NiO electrode materials in electrochemical capacitor: A review. Materials Science in Semiconductor Processing, 2019, 96: 78–90
https://doi.org/10.1016/j.mssp.2019.02.024
27 S S Ge, M L Li, Q Shao, et al.. Effect of metal ions on the anti-corrosion properties of γ-glycidoxypropyltrimethoxysilane coatings on cold-rolled iron. Anti-Corrosion Methods and Materials, 2016, 63(2): 82–88
https://doi.org/10.1108/ACMM-08-2014-1424
28 T Jin, F M Kong, R Q Bai, et al.. Anti-corrosion mechanism of epoxy-resin and different content Fe2O3 coatings on magnesium alloy. Frontiers of Materials Science, 2016, 10(4): 367–374
https://doi.org/10.1007/s11706-016-0357-5
29 S Nikpour, R Naderi, M Mahdavian. Fabrication of silane coating with improved protection performance using Mentha longifolia extract. Journal of the Taiwan Institute of Chemical Engineers, 2018, 88: 261–276
https://doi.org/10.1016/j.jtice.2018.04.017
30 A Zomorodian, F Brusciotti, A Fernandes, et al.. Anti-corrosion performance of a new silane coating for corrosion protection of AZ31 magnesium alloy in Hank’s solution. Surface and Coatings Technology, 2012, 206(21): 4368–4375
https://doi.org/10.1016/j.surfcoat.2012.04.061
31 U Eduok, R Suleiman, M Khaled, et al.. Enhancing water repellency and anticorrosion properties of a hybrid silica coating on mild steel. Progress in Organic Coatings, 2016, 93: 97–108
https://doi.org/10.1016/j.porgcoat.2016.01.006
32 L Rassouli, R Naderi, M Mahdavian. Study of the active corrosion protection properties of epoxy ester coating with zeolite nanoparticles doped with organic and inorganic inhibitors. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85: 207–220
https://doi.org/10.1016/j.jtice.2017.12.023
33 E Alibakhshi, E Ghasemi, M Mahdavian, et al.. A comparative study on corrosion inhibitive effect of nitrate and phosphate intercalated Zn–Al-layered double hydroxides (LDHs) nanocontainers incorporated into a hybrid silane layer and their effect on cathodic delamination of epoxy topcoat. Corrosion Science, 2017, 115: 159–174
https://doi.org/10.1016/j.corsci.2016.12.001
34 J Liu, D P Wang, L X Gao, et al.. Synergism between cerium nitrate and sodium dodecylbenzenesulfonate on corrosion of AA5052 aluminium alloy in 3 wt.% NaCl solution. Applied Surface Science, 2016, 389: 369–377
https://doi.org/10.1016/j.apsusc.2016.07.107
35 L E M Palomino, P H Suegama, I V Aoki, et al.. Investigation of the corrosion behaviour of a bilayer cerium-silane pre-treatment on Al 2024-T3 in 0.1 M NaCl. Electrochimica Acta, 2007, 52(27): 7496–7505
https://doi.org/10.1016/j.electacta.2007.03.002
36 J Carneiro, J Tedim, S C M Fernandes, et al.. Chitosan-based self-healing protective coatings doped with cerium nitrate for corrosion protection of aluminum alloy 2024. Progress in Organic Coatings, 2012, 75(1–2): 8–13
https://doi.org/10.1016/j.porgcoat.2012.02.012
37 W Trabelsi, P Cecilio, M G S Ferreira, et al.. Electrochemical assessment of the self-healing properties of Ce-doped silane solutions for the pre-treatment of galvanized steel substrates. Progress in Organic Coatings, 2005, 54(4): 276–284
https://doi.org/10.1016/j.porgcoat.2005.07.006
38 L Lei, J Shi, X Wang, et al.. Microstructure and electrochemical behavior of cerium conversion coating modified with silane agent on magnesium substrates. Applied Surface Science, 2016, 376: 161–171
https://doi.org/10.1016/j.apsusc.2016.03.150
39 C D Chen, S G Dong, R Q Hou, et al.. Insight into the anti-corrosion performance of electrodeposited silane/nano-CeO2 film on carbon steel. Surface and Coatings Technology, 2017, 326: 183–191
https://doi.org/10.1016/j.surfcoat.2017.06.031
40 Y Liu, G Lu, J Liu, et al.. Fabrication of biomimetic hydrophobic films with corrosion resistance on magnesium alloy by immersion process. Applied Surface Science, 2013, 264: 527–532
https://doi.org/10.1016/j.apsusc.2012.10.058
41 Y L Song, Z Wang, Y H Liu, et al.. Influence of erbium, cerium on the stress corrosion cracking behavior of AZ91 alloy in humid atmosphere. Advanced Engineering Materials, 2017, 19(7): 1700021
https://doi.org/10.1002/adem.201700021
42 X K Zhong, Q Li, J Y Hu, et al.. Effect of cerium concentration on microstructure, morphology and corrosion resistance of cerium-silica hybrid coatings on magnesium alloy AZ91D. Progress in Organic Coatings, 2010, 69(1): 52–56
https://doi.org/10.1016/j.porgcoat.2010.05.004
43 Q S Yao, F Zhang, L Song, et al.. Corrosion resistance of a ceria/polymethyltrimethoxysilane modified Mg–Al-layered double hydroxide on AZ31 magnesium alloy. Journal of Alloys and Compounds, 2018, 764: 913–928
https://doi.org/10.1016/j.jallcom.2018.06.152
44 F Zhang, C L Zhang, R C Zeng, et al.. Corrosion resistance of the superhydrophobic Mg(OH)2/Mg‒Al layered double hydroxide coatings on magnesium alloys. Metals, 2016, 6(4): 85
https://doi.org/10.3390/met6040085
45 L Y Cui, S D Gao, P P Li, et al.. Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31. Corrosion Science, 2017, 118: 84–95
https://doi.org/10.1016/j.corsci.2017.01.025
46 T Ishizaki, N Kamiyama, K Watanabe, et al.. Corrosion resistance of Mg(OH)2/Mg–Al layered double hydroxide composite film formed directly on combustion-resistant magnesium alloy AMCa602 by steam coating. Corrosion Science, 2015, 92: 76–84
https://doi.org/10.1016/j.corsci.2014.11.031
47 S Tian, L Li, W Sun, et al.. Robust adhesion of flower-like few-layer graphene nanoclusters. Scientific Reports, 2012, 2(1): 511 (7 pages)
https://doi.org/10.1038/srep00511 pmid: 22803004
48 R C Zeng, F Zhang, Z D Lan, et al.. Corrosion resistance of calcium-modified zinc phosphate conversion coatings on magnesium–aluminium alloys. Corrosion Science, 2014, 88: 452–459
https://doi.org/10.1016/j.corsci.2014.08.007
[1] Xiang SUN, Qing-Song YAO, Yu-Chao LI, Fen ZHANG, Rong-Chang ZENG, Yu-Hong ZOU, Shuo-Qi LI. Biocorrosion resistance and biocompatibility of Mg--Al layered double hydroxide/poly(L-lactic acid) hybrid coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(4): 426-441.
[2] Zai-Meng QIU, Fen ZHANG, Jun-Tong CHU, Yu-Chao LI, Liang SONG. Corrosion resistance and hydrophobicity of myristic acid modified Mg--Al LDH/Mg(OH)2 steam coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(1): 96-107.
[3] Mengke PENG, Fenyan HU, Minting DU, Bingjie MAI, Shurong ZHENG, Peng LIU, Changhao WANG, Yashao CHEN. Hydrothermal growth of hydroxyapatite and ZnO bilayered nanoarrays on magnesium alloy surface with antibacterial activities[J]. Front. Mater. Sci., 2020, 14(1): 14-23.
[4] Xiao-Jing JI, Qiang CHENG, Jing WANG, Yan-Bin ZHAO, Zhuang-Zhuang HAN, Fen ZHANG, Shuo-Qi LI, Rong-Chang ZENG, Zhen-Lin WANG. Corrosion resistance and antibacterial effects of hydroxyapatite coating induced by polyacrylic acid and gentamicin sulfate on magnesium alloy[J]. Front. Mater. Sci., 2019, 13(1): 87-98.
[5] Lian GUO, Fen ZHANG, Jun-Cai LU, Rong-Chang ZENG, Shuo-Qi LI, Liang SONG, Jian-Min ZENG. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys[J]. Front. Mater. Sci., 2018, 12(2): 198-206.
[6] Mathew JOY, Srividhya J. IYENGAR, Jui CHAKRABORTY, Swapankumar GHOSH. Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium[J]. Front. Mater. Sci., 2017, 11(4): 395-409.
[7] Rong-Chang ZENG,Xiao-Ting LI,Zhen-Guo LIU,Fen ZHANG,Shuo-Qi LI,Hong-Zhi CUI. Corrosion resistance of Zn–Al layered double hydroxide/ poly(lactic acid) composite coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2015, 9(4): 355-365.
[8] Yichi LIU,Debao LIU,Chen YOU,Minfang CHEN. Effects of grain size on the corrosion resistance of pure magnesium by cooling rate-controlled solidification[J]. Front. Mater. Sci., 2015, 9(3): 247-253.
[9] Yan JIANG,Jun-Feng YANG,Qian-Feng FANG. Effect of chromium content on microstructure and corrosion behavior of W--Cr--C coatings prepared on tungsten substrate[J]. Front. Mater. Sci., 2015, 9(1): 77-84.
[10] Jun LIANG,Ren-Hui ZHANG,Zhen-Jun PENG,Bai-Xing LIU. One-step electrochemical fabrication of bilayered MgO/polymer coating on magnesium alloy[J]. Front. Mater. Sci., 2014, 8(3): 307-312.
[11] Hong LIN, Ye ZHANG, Gang WANG, Jian-Bao LI. Cobalt-based layered double hydroxides as oxygen evolving electrocatalysts in neutral eletrolyte[J]. Front Mater Sci, 2012, 6(2): 142-148.
[12] Xin-Yu YE, Min-Fang CHEN, Chen YOU, De-Bao LIU, . The influence of HF treatment on corrosion resistance and in vitro biocompatibility of Mg-Zn-Zr alloy[J]. Front. Mater. Sci., 2010, 4(2): 132-138.
[13] San-san AO, Zhen LUO, Xin-xin TANG, Lin-shu ZHOU, Shu-xian YUAN, Rui WANG, Kai-lei SONG, Xing-zheng BU, Xiao-yi LI, Zhi-qing XUE. Study on quality of resistance spot welded aluminum alloys under various electrode pressures[J]. Front Mater Sci Chin, 2009, 3(1): 98-101.
[14] Jun LI, Jian-guo YANG, Hai-long LI, De-jun YAN, Hong-yuan FANG. Numerical simulation on bucking distortion of aluminum alloy thin-plate weldment[J]. Front Mater Sci Chin, 2009, 3(1): 84-88.
[15] San-bao LIN, Jian-ling SONG, Guang-chao MA, Chun-li YANG. Dissimilar metals TIG welding-brazing of aluminum alloy to galvanized steel[J]. Front Mater Sci Chin, 2009, 3(1): 78-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed