Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2017, Vol. 11 Issue (4) : 395-409    https://doi.org/10.1007/s11706-017-0400-1
RESEARCH ARTICLE
Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium
Mathew JOY1,2(), Srividhya J. IYENGAR1,2, Jui CHAKRABORTY2, Swapankumar GHOSH1()
1. Project Management Division, CSIR-Central Glass & Ceramic Research Institute, Kolkata-700032, India
2. Bioceramics & Coating Division, CSIR-Central Glass & Ceramic Research Institute, Kolkata-700032, India
 Download: PDF(619 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The present work demonstrates the possibilities of hydrothermal transformation of Zn–Al layered double hydroxide (LDH) nanostructure by varying the synthetic conditions. The manipulation in washing step before hydrothermal treatment allows control over crystal morphologies, size and stability of their aqueous solutions. We examined the crystal growth process in the presence and the absence of extra ions during hydrothermal treatment and its dependence on the drug (diclofenac sodium (Dic-Na)) loading and release processes. Hexagonal plate-like crystals show sustained release with ~90% of the drug from the matrix in a week, suggesting the applicability of LDH nanohybrids in sustained drug delivery systems. The fits to the release kinetics data indicated the drug release as a diffusion-controlled release process. LDH with rod-like morphology shows excellent colloidal stability in aqueous suspension, as studied by photon correlation spectroscopy.

Keywords layered double hydroxide      crystal morphology      hydrothermal treatment      drug loading     
Corresponding Author(s): Mathew JOY,Swapankumar GHOSH   
Online First Date: 07 November 2017    Issue Date: 29 November 2017
 Cite this article:   
Mathew JOY,Srividhya J. IYENGAR,Jui CHAKRABORTY, et al. Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium[J]. Front. Mater. Sci., 2017, 11(4): 395-409.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-017-0400-1
https://academic.hep.com.cn/foms/EN/Y2017/V11/I4/395
Fig.1  XRD patterns of LCp, LHb and their drug-loaded counterparts, LCpDic and LHbDic, showing high intense basal reflections.
Sample Cell parameters d(003) d(006) l
a c
LCp 3.07 22.8 7.60 3.8 7.59
LCpDic 3.07 65.88 21.9 11.22 22.2
LHa 3.06 22.59 7.53 3.75 7.5
LHaDic 3.06 23.04 7.68 3.82 7.6
LHb 3.07 26.8 8.93 4.42 8.8
LHbDic 3.07 67.05 22.35 11.38 22.5
Tab.1  Calculated lattice parameters and interlayer spacing of various LDH samples
Fig.2  Scheme 1 ?(a) The sketch showing probable orientation of Dic-Na drug in the interlayer gallery of LHbDic. (b) The chemical structure of Dic-Na.
Fig.3  FTIR spectra of pristine and diclofenac-loaded LDHs.
Fig.4  (a) FESEM image of LCp. (b)(c) Bright-field TEM images of hydrothermally prepared LHa and LHb respectively when viewed in the [001] zone axis. Insets of (b) and (c) show the SAED patterns.
Fig.5  Scheme 2 Schematic representation of the formation of LHb crystals and the loading of drug into the sample.
Fig.6  (a) TG and (b) DTA plots of LHb (i), LHbDic (ii) and pure Dic-Na (iii). The derivative of TG data of LHbDic is shown as dotted line.
Sample Weight remaining/% Adsorbed moisture/% Weight content of structural ions/% Drug loading/% Chloride loading/(meq·g −1)
LHb 74.0 2.0 24.0 0.59
LHbDic 51.0 2.4 16.5 30.1
LCp 71.0 1.0 28.0 0.56
LCpDic 54.2 4.8 21.4 19.6
LHa 83.2 1.9 14.9 0.073
LHaDic 76.6 2.0 13.7 7.7
Tab.2  Analyses of thermogravimetry data and chloride ion saturation into the LDH structure
Fig.7  Zeta potentials of various LDH and drug-loaded samples with different pH values varying from neutral to alkaline.
Fig.8  (a) The decay of auto correlation function with time obtained from DLS for LHa (i) and LHb (ii). The inset shows the hydrodynamic size of LHa (dotted line) and LHb.(b)Zav size and PDI as a function of temperature for LHa.
Fig.9  (a) Release profiles of diclofenac drug from LHaDic (i), LCpDic (ii) and LHbDic (iii). Contact angle microscopic images of water droplets in(b) LHb and (c) LHbDic surface.
Kinetic model Mathematical form Parameter, R2
LHbDic LCpDic
First-order model ln( Ct/C0) = −kdt 0.872 0.823
Parabolic diffusion model (1− Ct/C0)/t = kdt−0.5 + a 0.973 0.800
Elovich model 1− Ct/C0 = alnt + b 0.985 0.979
Ritger–Peppas equation Ct/C0 = kd(ta)n 0.991 0.986
Tab.3  Linear correlation coefficient (R2) values of different kinetic models for LHbDic and LCpDic
Fig.10  Fits to drug release data of LHbDic for different kinetic models: (a) first-order model; (b) parabolic diffusion model; (c)Elovich model; (d) R-P equation.
Fig.11  Fits to drug release data of LCpDic for different kinetic models: (a) first-order model; (b) parabolic diffusion model; (c) Elovich model; (d) R-P equation.
  Fig. S1 The XRD pattern of LHa. The vertical drop-lines correspond to JCPDS No. 38-0486 shown for comparison of reflection positions and intensity.
  Fig. S2 TG curves: (a) LHa (i), LHaDic (ii); (b) LCp (iii), LCpDic (iv). The derivatives of TG data of LHaDic and LCpDic are shown as dotted lines.
Sample Composition by weight /%
Zn Al Nitrate Carbonate
LCp 43.63 8.62 18.6 0.56
LHa 43.53 5.95 13.34 0.26
LHb 43.45 8.34 17.89 0.64
  Table S1 Summary of chemical analysis data of pristine LDH
Sample Drug content /%
LHaDic 5.7
LHbDic 32.45
LCpDic 22.5
  Table S2 Drug content value calculated from HPLC data
  Fig. S3 The conductivity changes of LHb suspension while varying the pH of surrounding medium from 6 to 13.
  Fig. S4 The high-quality phase data associated with LHb samples from positive to negative with zeta potential while varying the pH value of surrounding medium from 6 to13.
  Fig. S5Zav and mean count rate of LDH dispersion plotted as function of time for (a) LHa and (b) LHaDic.
  Fig. S6 Hydrodynamic size of LHbDic (in dotted line) and LCpDic.
  Fig. S7 Nitrogen isotherms and their pore size distribution profiles for drug-loaded LDH particles.
1 Joo J, Chow  B Y, Prakash  M, et al.. Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis. Nature Materials, 2011, 10(8): 596–601
https://doi.org/10.1038/nmat3069 pmid: 21743451
2 Zhao Y, Wei  M, Lu J , et al.. Biotemplated hierarchical nanostructure of layered double hydroxides with improved photocatalysis performance. ACS Nano, 2009, 3(12): 4009–4016
https://doi.org/10.1021/nn901055d pmid: 19928881
3 Cai X Q, Shen  X P, Ma  L B, et al.. Solvothermal synthesis of NiCo-layered double hydroxide nanosheets decorated on RGO sheets for high performance supercapacitor. Chemical Engineering Journal, 2015, 268: 251–259
https://doi.org/10.1016/j.cej.2015.01.072
4 Bockowski M, Grzegory  I, Krukowski S , et al.. Directional crystallization of GaN on high-pressure solution grown substrates by growth from solution and HVPE. Journal of Crystal Growth, 2002, 246(3–4): 194–206
https://doi.org/10.1016/S0022-0248(02)01742-6
5 Cara C, Musinu  A, Mameli V , et al.. Dialkylamide as both capping agent and surfactant in a direct solvothermal synthesis of magnetite and titania nanoparticles. Crystal Growth & Design, 2015, 15(5): 2364–2372
https://doi.org/10.1021/acs.cgd.5b00160
6 Ortiz-Landeros J, Gómez-Yáñez  C, López-Juárez  R, et al.. Synthesis of advanced ceramics by hydrothermal crystallization and modified related methods. Journal of Advanced Ceramics, 2012, 1(3): 204–220
https://doi.org/10.1007/s40145-012-0022-0
7 Xu Z P, Lu  G Q. Layered double hydroxide nanomaterials as potential cellular drug delivery agents. Pure and Applied Chemistry, 2006, 78(9): 1771–1779
https://doi.org/10.1351/pac200678091771
8 Choi G, Kim  S Y, Oh  J M, et al.. Drug-ceramic 2-dimensional nanoassemblies for drug delivery system in physiological condition. Journal of the American Ceramic Society, 2012, 95(9): 2758–2765
https://doi.org/10.1111/j.1551-2916.2012.05219.x
9 del Arco M, Gutiérrez  S, Martín C V , et al.. Synthesis and characterization of layered double hydroxides (LDH) intercalated with non-steroidal anti-inflammatory drugs (NSAID). Journal of Solid State Chemistry, 2004, 177(11): 3954–3962
https://doi.org/10.1016/j.jssc.2004.08.006
10 Khan A I, Lei  L, Norquist A J , et al.. Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide. Chemical Communications, 2001, (22): 2342–2343
https://doi.org/10.1039/b106465g pmid: 12240066
11 Chakraborty M, Dasgupta  S, Soundrapandian C , et al.. Methotrexate intercalated ZnAl-layered double hydroxide. Journal of Solid State Chemistry, 2011, 184(9): 2439–2445
https://doi.org/10.1016/j.jssc.2011.07.015
12 Zhang F, Zhao  L, Chen H , et al.. Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum. Angewandte Chemie International Edition, 2008, 47(13): 2466–2469
https://doi.org/10.1002/anie.200704694 pmid: 18288662
13 Zhang K, Xu  Z P, Lu  J, et al.. Potential for layered double hydroxides-based, innovative drug delivery systems. International Journal of Molecular Sciences, 2014, 15(5): 7409–7428
https://doi.org/10.3390/ijms15057409 pmid: 24786098
14 Chakraborty M, Dasgupta  S, Sengupta S , et al.. Layered double hydroxides based ceramic nanocapsules as reservoir and carrier of functional anions. Transactions of the Indian Ceramic Society, 2010, 69(3): 153–163
https://doi.org/10.1080/0371750X.2010.11090832
15 Cunha V R R ,  Petersen P A D ,  Goncalves M B , et al.. Structural, spectroscopic (NMR, IR, and Raman), and DFT investigation of the self-assembled nanostructure of pravastatin-LDH (layered double hydroxides) systems. Chemistry of Materials, 2012, 24(8): 1415–1425
https://doi.org/10.1021/cm202953y
16 Chakraborty M, Bose  P, Mandal T , et al.. Effect of process variations on anticancerous drug intercalation in ceramic based delivery system. Transactions of the Indian Ceramic Society, 2010, 69(4): 229–234
https://doi.org/10.1080/0371750X.2010.11090840
17 Panda H S, Srivastava  R, Bahadur D . In-vitro release kinetics and stability of anticardiovascular drugs-intercalated layered double hydroxide nanohybrids. The Journal of Physical Chemistry B, 2009, 113(45): 15090–15100
https://doi.org/10.1021/jp905440e pmid: 19831399
18 Costantino U, Nocchetti  M. Layered double hydroxides and their intercalation compounds in photochemistry and in medicinal chemistry. In: Rives V , ed. New York: Nova Science Publishers, Inc., 2006, 435–468
19 Ray S, Joy  M, Sa B , et al.. pH dependent chemical stability and release of methotrexate from a novel nanoceramic carrier. RSC Advances, 2015, 5(49): 39482–39494
https://doi.org/10.1039/C5RA03546E
20 Costantino U, Bugatti  V, Gorrasi G , et al.. New polymeric composites based on poly(ε-caprolactone) and layered double hydroxides containing antimicrobial species. ACS Applied Materials & Interfaces, 2009, 1(3): 668–677
https://doi.org/10.1021/am8001988 pmid: 20355989
21 Gunawan P, Xu  R. Synthesis of unusual coral-like layered double hydroxide microspheres in a nonaqueouspolar solvent/surfactant system. Journal of Materials Chemistry, 2008, 18(18): 2112–2120
https://doi.org/10.1039/b719817e
22 Li B, He  J, Evans D G , et al.. Enteric-coated layered double hydroxides as a controlled release drug delivery system. International Journal of Pharmaceutics, 2004, 287(1–2): 89–95
https://doi.org/10.1016/j.ijpharm.2004.08.016 pmid: 15541916
23 Riman R E, Suchanek  W L, Lencka  M M. Hydrothermal crystallization of ceramics. Annales de Chimie Science des Materiaux, 2002, 27(6): 15–36
https://doi.org/10.1016/S0151-9107(02)90012-7
24 Lopez T, Bosch  P, Ramos E , et al.. Synthesis and characterization of sol–gel hydrotalcites. Structure and texture. Langmuir, 1996, 12(1): 189–192
https://doi.org/10.1021/la940703s
25 Xu Z P, Stevenson  G S, Lu  C Q, et al.. Stable suspension of layered double hydroxide nanoparticles in aqueous solution. Journal of the American Chemical Society, 2006, 128(1): 36–37
https://doi.org/10.1021/ja056652a pmid: 16390109
26 Tian D Y, Wang  Y, Li S P , et al.. Synthesis of methotrexatum intercalated layered double hydroxides by different methods: Biodegradation process and bioassay explore. Applied Clay Science, 2015, 118: 87–98
https://doi.org/10.1016/j.clay.2015.09.007
27 Tian D Y, Liu  Z L, Li  S P, et al.. Facile synthesis of methotrexate intercalated layered double hydroxides: particle control, structure and bioassay explore. Materials Science and Engineering C, 2014, 45: 297–305
https://doi.org/10.1016/j.msec.2014.09.024 pmid: 25491832
28 Choi G, Piao  H, Alothman Z A , et al.. Anionic clay as the drug delivery vehicle: tumor targeting function of layered double hydroxide-methotrexate nanohybrid in C33A orthotopic cervical cancer model. International Journal of Nanomedicine, 2016, 11(25): 337–348
https://doi.org/10.2147/IJN.S95611 pmid: 26855572
29 Al-Hazmi F S, Al-Ghamdi  A A, Beall  G W, et al.. Synthesis and characterization of 4-amino-3-isoxazolidinone intercalated NiAl-LDH for nanocarrier applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 485: 91–95
https://doi.org/10.1016/j.colsurfa.2015.09.011
30 Kesarwani P, Rastogi  S, Bhalla, et al.. Nanoparticulate drug delivery system to improve systemic absorption-review. International Journal of Research in Pharmaceutical and Nano Sciences, 2014, 3: 558–569
31 Iyengar S J, Joy  M, Ghosh C , et al.. Magnetic, X-ray and Mossbauer studies on magnetite/maghemite core–shell nanostructures fabricated through an aqueous route. RSC Advances, 2014, 4(110): 64919–64929 
https://doi.org/10.1039/C4RA11283K
32 Chakraborty J, Sengupta  S, Dasgupta S , et al.. Determination of trace level carbonate ion in Mg–Al layered double hydroxide: Its significance on the anion exchange behaviour. Journal of Industrial and Engineering Chemistry, 2012, 18(6): 2211–2216
https://doi.org/10.1016/j.jiec.2012.06.020
33 Joy M, Iyengar  S J, Chakraborty  J, et al.. Growth of hierarchical hexagonal layered double hydroxide crystals to large elongated spindle shaped particles. Journal of Nanoscience and Nanotechnology, 2016, 16(9): 10060–10066
https://doi.org/10.1166/jnn.2016.12533
34 Wang Y, Zhang  D. Bioinspired assembly of layered double hydroxide/carboxymethyl chitosan bionanocomposite hydrogel films. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2014, 2(8): 1024–1030
https://doi.org/10.1039/C3TB21608J
35 Zhang H, Pan  D, Zou K , et al.. A novel core–shell structured magnetic organic-inorganic nanohybrid involving drug-intercalated layered double hydroxides coated on a magnesium ferrite core for magnetically controlled drug release. Journal of Materials Chemistry, 2009, 19(19): 3069–3077
https://doi.org/10.1039/b820176e
36 Chakraborty J, Roychowdhury  S, Sengupta S , et al.. Mg–Al layered double hydroxide-methotrexate nanohybrid drug delivery system: evaluation of efficacy. Materials Science and Engineering C, 2013, 33(4): 2168–2174
https://doi.org/10.1016/j.msec.2013.01.047 pmid: 23498245
37 Hussein Al Ali S H ,  Al-Qubaisi M ,  Hussein M Z , et al.. Comparative study of Mg/Al- and Zn/Al-layered double hydroxide-perindopril erbumine nanocomposites for inhibition of angiotensin-converting enzyme. International Journal of Nanomedicine, 2012, 7: 4251–4262
https://doi.org/10.2147/IJN.S32267 pmid: 22904631
38 Costa D G, Rocha  A B, Souza  W F, et al.. Ab initio study of reaction pathways related to initial steps of thermal decomposition of the layered double hydroxide compounds. The Journal of Physical Chemistry C, 2012, 116(25): 13679–13687
https://doi.org/10.1021/jp303529y
39 Prevot V, Caperaa  N, Taviot-Gueho C , et al.. Glycine-assisted hydrothermal synthesis of nial-layered double hydroxide nano-structures. Crystal Growth & Design, 2009, 9(8): 3646–3654
https://doi.org/10.1021/cg900384n
40 Prince J, Montoya  A, Ferrat G , et al.. Proposed general sol–gel method to prepare multimetallic layered double hydroxides: synthesis, characterization, and envisaged application. Chemistry of Materials, 2009, 21(24): 5826–5835
https://doi.org/10.1021/cm902741c
41 Iyengar S J, Joy  M, Maity T , et al.. Colloidal properties of water dispersible magnetite nanoparticles by photon correlation spectroscopy. RSC Advances, 2016, 6(17): 14393–14402
https://doi.org/10.1039/C5RA26488J
42 Kura A U, Hussein  M Z, Fakurazi  S, et al.. Layered double hydroxide nanocomposite for drug delivery systems; bio-distribution, toxicity and drug activity enhancement. Chemistry Central Journal, 2014, 8(1): 47 (8 pages) 
https://doi.org/10.1186/s13065-014-0047-2 pmid: 25177361
[1] Xiang SUN, Qing-Song YAO, Yu-Chao LI, Fen ZHANG, Rong-Chang ZENG, Yu-Hong ZOU, Shuo-Qi LI. Biocorrosion resistance and biocompatibility of Mg--Al layered double hydroxide/poly(L-lactic acid) hybrid coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(4): 426-441.
[2] Zai-Meng QIU, Fen ZHANG, Jun-Tong CHU, Yu-Chao LI, Liang SONG. Corrosion resistance and hydrophobicity of myristic acid modified Mg--Al LDH/Mg(OH)2 steam coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(1): 96-107.
[3] Wei WU, Fen ZHANG, Yu-Chao LI, Yong-Feng ZHOU, Qing-Song YAO, Liang SONG, Rong-Chang ZENG, Sie Chin TJONG, Dong-Chu CHEN. Corrosion resistance of a silane/ceria modified Mg--Al-layered double hydroxide on AA5005 aluminum alloy[J]. Front. Mater. Sci., 2019, 13(4): 420-430.
[4] Lian GUO, Fen ZHANG, Jun-Cai LU, Rong-Chang ZENG, Shuo-Qi LI, Liang SONG, Jian-Min ZENG. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys[J]. Front. Mater. Sci., 2018, 12(2): 198-206.
[5] Rong-Chang ZENG,Xiao-Ting LI,Zhen-Guo LIU,Fen ZHANG,Shuo-Qi LI,Hong-Zhi CUI. Corrosion resistance of Zn–Al layered double hydroxide/ poly(lactic acid) composite coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2015, 9(4): 355-365.
[6] Hong LIN, Ye ZHANG, Gang WANG, Jian-Bao LI. Cobalt-based layered double hydroxides as oxygen evolving electrocatalysts in neutral eletrolyte[J]. Front Mater Sci, 2012, 6(2): 142-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed