Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2020, Vol. 14 Issue (1) : 96-107    https://doi.org/10.1007/s11706-020-0492-x
RSEARCH ARTICLE
Corrosion resistance and hydrophobicity of myristic acid modified Mg--Al LDH/Mg(OH)2 steam coating on magnesium alloy AZ31
Zai-Meng QIU1, Fen ZHANG1(), Jun-Tong CHU1, Yu-Chao LI2, Liang SONG1()
1. Corrosion Laboratory for Light Metals, College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2. School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
 Download: PDF(2246 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A hydrophobic surface was successfully fabricated on the Mg–Al-layered double hydroxide (Mg–Al LDH)/Mg(OH)2-coated AZ31 magnesium alloy via an in-situ steam coating (SC) process and a subsequent surface modification with environment-friendly myristic acid (MA). The microstructure, composition and hydrophobicity of SC/MA composite coating were investigated by XRD, SEM, EDS, FTIR, and contact angle (CA) measurement. The corrosion behavior of the hybrid coating was evaluated by potentiodynamic polarization, EIS and hydrogen evolution test in 3.5 wt.% NaCl solution. The results showed that the LDH coating had nano-flake microstructure, which remained unchanged after modification with MA. The CA of the MA-modified coating surface reached up to 129°±3.5°, and the corrosion current density of SC/MA-2 coating decreased about three orders of the magnitude compared to that of the substrate. It is proven that the modified surface has an effective anti-corrosion effect on AZ31 alloy. The formation mechanism and the corrosion mechanism of the coating were also discussed.

Keywords magnesium alloy      steam coating      layered double hydroxide      corrosion resistance      hydrophobicity     
Corresponding Author(s): Fen ZHANG,Liang SONG   
Online First Date: 09 January 2020    Issue Date: 05 March 2020
 Cite this article:   
Zai-Meng QIU,Fen ZHANG,Jun-Tong CHU, et al. Corrosion resistance and hydrophobicity of myristic acid modified Mg--Al LDH/Mg(OH)2 steam coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(1): 96-107.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-020-0492-x
https://academic.hep.com.cn/foms/EN/Y2020/V14/I1/96
Fig.1  Schematic diagram of the preparation process of composite coatings.
Fig.2  SEM images of different coatings (insets showing CA): (a)(b) steam coating; (c) SC/MA-1 coating; (d) SC/MA-2 coating.
Point Element content/at.%
Mg O Al C Total
#1 30.66 63.59 1.81 3.94 100
#2 29.93 64 1.92 4.15 100
#3 30.81 61.69 1.36 6.14 100
#4 31.53 60.94 1.8 5.73 100
#5 28.52 61.64 1.23 8.61 100
#6 30.07 60.63 1.18 8.12 100
Tab.1  Element compositions of coatings in Fig. 2
Fig.3  (a) The cross-sectional morphology of SC/MA-2 coating and (b)(c)(d)(e)(f) corresponding EDS mapping and linear scanning images.
Fig.4  Open porosities of steam coating, SC/MA-1 coating and SC/MA-2 coating.
Fig.5  XRD patterns of AZ31 alloy, steam coating, SC/MA-1 coating and SC/MA-2 coating.
Fig.6  FTIR spectra of steam coating (a), SC/MA-1 coating (b) and SC/MA-2 coating (c).
Fig.7  Potentiodynamic polarization curves of as-prepared specimens in 3.5 wt.% NaCl solution: AZ31 substrate (a); steam coating (b); SC/MA-1 coating (c); SC/MA-2 coating (d).
Sample ba/(mV·dec−1) bc/(mV·dec−1) Ecorr/V, SCE icorr/(A·cm−2) Rp/(W·cm2)
Substrate 122.058 100.65 −1.457 1.296×10−5 1.923×104
SC 286.647 170.849 −1.384 1.923×10−7 9.550×105
SC/MA-1 542.025 218.034 −1.301 4.596×10−8 3.446×106
SC/MA-2 930.021 230.042 −1.299 1.046×10−8 1.269×107
Tab.2  The potential and current densities of corrosion recorded in Fig. 7
Fig.8  (a)(b)(c) EIS results and (d)(e)(f) corresponding equivalent circuits of AZ31 substrate, steam coating, SC/MA-1 coating and SC/MA-2 coating.
Sample Rs
/(W·cm2)
CPE
/(W−1·sn·cm−2)
Rct
/(W·cm2)
RL
/(W·cm2)
L
/(H·cm−2)
C1
/(F·cm−2)
C2
/(F·cm−2)
R1
/(W·cm2)
R2
/(W·cm2)
Zw
/(W−0.5·s−1·m−2)
Substrate 22.09 1.497×10−5 157.8 155.8 200.3 ? ? ? ? ?
SC 23.22 6.711×10−7 5.959×104 ? ? 5.618×10−10 1.053×10−5 2789 ? 3.138×10−5
SC/MA-1 112.3 6.449×10−7 1.314×105 ? ? 2.539×10−9 4.899×10−9 3248 7.918×103 4.191×10−5
SC/MA-2 254.4 5.183×10−7 2.683×105 ? ? 7.391×10−10 9.586×10−10 8182 1.157×104 1.152×10−5
Tab.3  EIS data recorded in Fig. 8
Fig.9  Function of (a)(b) hydrogen evolution volume and (c)(d) hydrogen evolution rate of AZ31 substrate (I), steam coating (II), SC/MA-1 (III) and SC/MA-2 (IV) after immersion for 288 h.
Fig.10  SEM images of (a) AZ31 substrate, (b) steam coating, (c) SC/MA-1 coating and (d) SC/MA-2 coating after immersion for 288 h.
Fig.11  The element composition bar image of AZ31 substrate, steam coating and composite coatings after immersion for 288 h: Points 1, 2, 3 and 4 in Fig. 10.
Fig.12  XRD patterns of steam and SC/MA coatings after the immersion for 288 h.
Fig.13  The schematic representation of (a) SC/MA coating and (b)(c)(d) its corrosion mechanism.
1 P Jia, M Wu, J Zhang, et al.. Effects of Mg‒Zn‒Y quasicrystal addition on the microstructures, mechanical performances and corrosion behaviors of as-cast AM60 magnesium alloy. Materials Research Express, 2018, 5(10): 106512 doi:10.1088/2053-1591/aada70
2 F S Pan, B Zeng, B Jiang, et al.. Enhanced mechanical properties of AZ31B magnesium alloy thin sheets processed by on-line heating rolling. Journal of Alloys and Compounds, 2017, 693: 414–420
https://doi.org/10.1016/j.jallcom.2016.09.220
3 F Li, Y Liu, X B Li. Dynamic recrystallization behavior of AZ31 magnesium alloy processed by alternate forward extrusion. Frontiers of Materials Science, 2017, 11(3): 296–305
https://doi.org/10.1007/s11706-017-0387-7
4 T Jin, Y Wang, H Yin, et al.. Corrosion protection properties and mechanism of epoxy/acetic acid-doped polyaniline coating on magnesium alloy. Journal of Nanoscience and Nanotechnology, 2018, 18(7): 4992–5000
https://doi.org/10.1166/jnn.2018.15278 pmid: 29442684
5 H Jin, X Yang, M Wang. Chemical conversion coating on AZ31B magnesium alloy and its corrosion tendency. Acta Metallurgica Sinica (English Letters), 2009, 22(1): 65–70
https://doi.org/10.1016/S1006-7191(08)60072-1
6 T Ishizaki, R Kudo, T Omi, et al.. Magnesium hydroxide/magnesium phosphate compounds composite coating for corrosion protection of magnesium alloy by a combination process of chemical conversion and steam curing. Materials Letters, 2012, 68: 122–125
https://doi.org/10.1016/j.matlet.2011.10.045
7 F Zhang, C L Zhang, L Song, et al.. Corrosion resistance of superhydrophobic Mg‒Al layered double hydroxide coatings on aluminum alloys. Acta Metallurgica Sinica (English Letters), 2015, 28(11): 1373–1381 doi:10.1007/s40195-015-0335-4
8 C Y Li, X L Fan, R C Zeng, et al.. Corrosion resistance of in-situ growth of nano-sized Mg(OH)2 on micro-arc oxidized magnesium alloy AZ31 — Influence of EDTA. Journal of Materials Science and Technology, 2019, 35(6): 1088–1098
https://doi.org/10.1016/j.jmst.2019.01.006
9 B P Singh, B K Jena, S Bhattacharjee, et al.. Development of oxidation and corrosion resistance hydrophobic graphene oxide‒polymer composite coating on copper. Surface and Coatings Technology, 2013, 232: 475–481
https://doi.org/10.1016/j.surfcoat.2013.06.004
10 R C Zeng, W C Qi, Y W Song, et al.. In vitro degradation of MAO/PLA coating on Mg‒1.21Li‒1.12Ca‒1.0Y alloy. Frontiers of Materials Science, 2014, 8(4): 343–353
https://doi.org/10.1007/s11706-014-0264-6
11 T Jin, Y Han, R Bai, et al.. Corrosion protection properties of nano NH2-reduced graphene oxide/epoxy composite coatings formed by self-curing on magnesium alloy. Journal of Nanoscience and Nanotechnology, 2018, 18(7): 4971–4981
https://doi.org/10.1166/jnn.2018.15357 pmid: 29442681
12 J Liang, R H Zhang, Z J Peng, et al.. One-step electrochemical fabrication of bilayered MgO/polymer coating on magnesium alloy. Frontiers of Materials Science, 2014, 8(3): 307–312
https://doi.org/10.1007/s11706-014-0250-z
13 T Jin, F M Kong, R Q Bai, et al.. Anti-corrosion mechanism of epoxy-resin and different content Fe2O3 coatings on magnesium alloy. Frontiers of Materials Science, 2016, 10(4): 367–374
https://doi.org/10.1007/s11706-016-0357-5
14 L Y Li, L Y Cui, R C Zeng, et al.. Advances in functionalized polymer coatings on biodegradable magnesium alloys — A review. Acta Biomaterialia, 2018, 79: 23–36
https://doi.org/10.1016/j.actbio.2018.08.030 pmid: 30149212
15 G Zhang, L Wu, A T Tang, et al.. Growth behavior of MgAl-layered double hydroxide films by conversion of anodic films on magnesium alloy AZ31 and their corrosion protection. Applied Surface Science, 2018, 456: 419–429
https://doi.org/10.1016/j.apsusc.2018.06.085
16 L Wu, D N Yang, G Zhang, et al.. Fabrication and characterization of Mg‒M layered double hydroxide films on anodized magnesium alloy AZ31. Applied Surface Science, 2018, 431: 177–186
https://doi.org/10.1016/j.apsusc.2017.06.244
17 G Zhang, L Wu, A T Tang, et al.. Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31. Corrosion Science, 2018, 139: 370–382
https://doi.org/10.1016/j.corsci.2018.05.010
18 T Ishizaki, N Kamiyama, K Watanabe, et al.. Corrosion resistance of Mg(OH)2/Mg‒Al layered double hydroxide composite film formed directly on combustion-resistant magnesium alloy AMCa602 by steam coating. Corrosion Science, 2015, 92: 76–84
https://doi.org/10.1016/j.corsci.2014.11.031
19 L Guo, F Zhang, J C Lu, et al.. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys. Frontiers of Materials Science, 2018, 12(2): 198–206
https://doi.org/10.1007/s11706-018-0415-2
20 J Chen, Y W Song, D Y Shan, et al.. Study of the in situ growth mechanism of Mg‒Al hydrotalcite conversion film on AZ31 magnesium alloy. Corrosion Science, 2012, 63: 148–158
https://doi.org/10.1016/j.corsci.2012.05.022
21 J Chen, Y Song, D Shan, et al.. Study of the corrosion mechanism of the in situ grown Mg–Al–CO32− hydrotalcite film on AZ31 alloy. Corrosion Science, 2012, 65: 268–277
https://doi.org/10.1016/j.corsci.2012.08.026
22 R C Zeng, X T Li, Z G Liu, et al.. Corrosion resistance of Zn‒Al layered double hydroxide/poly(lactic acid) composite coating on magnesium alloy AZ31. Frontiers of Materials Science, 2015, 9(4): 355–365
https://doi.org/10.1007/s11706-015-0307-7
23 D D Li, F Y Wang, X Yu, et al.. Anticorrosion organic coating with layered double hydroxide loaded with corrosion inhibitor of tungstate. Progress in Organic Coatings, 2011, 71(3): 302–309
https://doi.org/10.1016/j.porgcoat.2011.03.023
24 R C Zeng, Z G Liu, F Zhang, et al.. Corrosion of molybdate intercalated hydrotalcite coating on AZ31 Mg alloy. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(32): 13049–13057
https://doi.org/10.1039/C4TA01341G
25 Q S Yao, F Zhang, L Song, et al.. Corrosion resistance of a ceria/polymethyltrimethoxysilane modified Mg‒Al-layered double hydroxide on AZ31 magnesium alloy. Journal of Alloys and Compounds, 2018, 764: 913–928
https://doi.org/10.1016/j.jallcom.2018.06.152
26 N Kamiyama, G Panomsuwan, E Yamamoto, et al.. Effect of treatment time in the Mg(OH)2/Mg‒Al LDH composite film formed on Mg alloy AZ31 by steam coating on the corrosion resistance. Surface and Coatings Technology, 2016, 286: 172–177
https://doi.org/10.1016/j.surfcoat.2015.11.051
27 T Ishizaki, S Chiba, H Suzuki. In situ formation of anticorrosive Mg‒Al layered double hydroxide-containing magnesium hydroxide film on magnesium alloy by steam coating. ECS Electrochemistry Letters, 2013, 2(5): C15–C17
https://doi.org/10.1149/2.006305eel
28 T Ishizaki, S Chiba, K Watanabe, et al.. Corrosion resistance of Mg‒Al layered double hydroxide container-containing magnesium hydroxide films formed directly on magnesium alloy by chemical-free steam coating. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(31): 8968–8977
https://doi.org/10.1039/c3ta11015j
29 S Huang, H Peng, W W Tjiu, et al.. Assembling exfoliated layered double hydroxide (LDH) nanosheet/carbon nanotube (CNT) hybrids via electrostatic force and fabricating nylon nanocomposites. The Journal of Physical Chemistry B, 2010, 114(50): 16766–16772
https://doi.org/10.1021/jp1087256 pmid: 21126035
30 H Liao, Y Jia, L Wang, et al.. Size effect of layered double hydroxide platelets on the crystallization behavior of isotactic polypropylene. ACS Omega, 2017, 2(8): 4253–4260
https://doi.org/10.1021/acsomega.7b00621 pmid: 31457718
31 J Zhang, C Gu, J Tu. Robust slippery coating with superior corrosion resistance and anti-icing performance for AZ31B Mg alloy protection. ACS Applied Materials & Interfaces, 2017, 9(12): 11247–11257
https://doi.org/10.1021/acsami.7b00972 pmid: 28277644
32 Z Yuan, X Wang, J Bin, et al.. Controllable fabrication of lotus-leaf-like superhydrophobic surface on copper foil by self-assembly. Applied Physics A: Materials Science & Processing, 2014, 116(4): 1613‒1620 doi:10.1007/s00339-014-8472-6
33 E Richard, S T Aruna, B J Basu. Superhydrophobic surfaces fabricated by surface modification of alumina particles. Applied Surface Science, 2012, 258(24): 10199–10204
https://doi.org/10.1016/j.apsusc.2012.07.009
34 N Cao, Y Y Miao, D L Zhang, et al.. Preparation of mussel-inspired perfluorinated polydopamine film on brass substrates: Superhydrophobic and anti-corrosion application. Progress in Organic Coatings, 2018, 125: 109–118
https://doi.org/10.1016/j.porgcoat.2018.09.007
35 J Kuang, Z Ba, Z Li, et al.. Fabrication of a superhydrophobic Mg‒Mn layered double hydroxides coating on pure magnesium and its corrosion resistance. Surface and Coatings Technology, 2019, 361: 75–82
https://doi.org/10.1016/j.surfcoat.2019.01.009
36 G Zhang, A T Tang, L Wu, et al.. In-situ grown super- or hydrophobic Mg‒Al layered double hydroxides films on the anodized magnesium alloy to improve corrosion properties. Surface and Coatings Technology, 2019, 366: 238–247
https://doi.org/10.1016/j.surfcoat.2019.03.016
37 L Zhao, Q Liu, R Gao, et al.. One-step method for the fabrication of superhydrophobic surface on magnesium alloy and its corrosion protection, antifouling performance. Corrosion Science, 2014, 80: 177–183
https://doi.org/10.1016/j.corsci.2013.11.026
38 P Ding, Z Z Li, Q Wang, et al.. In situ growth of layered double hydroxide films under dynamic processes: Influence of metal cations. Materials Letters, 2012, 77: 1–3
https://doi.org/10.1016/j.matlet.2012.02.124
39 S Ozturk, D Balkose, S Okur, et al.. Effect of humidity on electrical conductivity of zinc stearate nanofilms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302(1‒3): 67–74
https://doi.org/10.1016/j.colsurfa.2007.01.039
40 Y H Wang, W Wang, L Zhong, et al.. Super-hydrophobic surface on pure magnesium substrate by wet chemical method. Applied Surface Science, 2010, 256(12): 3837–3840
https://doi.org/10.1016/j.apsusc.2010.01.037
41 J Xi, L Feng, L Jiang. A general approach for fabrication of superhydrophobic and superamphiphobic surfaces. Applied Physics Letters, 2008, 92(5): 053102
https://doi.org/10.1063/1.2839403
42 F Zhang, Z G Liu, R C Zeng, et al.. Corrosion resistance of Mg‒Al-LDH coating on magnesium alloy AZ31. Surface and Coatings Technology, 2014, 258: 1152–1158
https://doi.org/10.1016/j.surfcoat.2014.07.017
43 F Zhang, C L Zhang, R C Zeng, et al.. Corrosion resistance of the superhydrophobic Mg(OH)2/Mg‒Al layered double hydroxide coatings on magnesium alloys. Metals, 2016, 6(4): 85
https://doi.org/10.3390/met6040085
[1] Xiang SUN, Qing-Song YAO, Yu-Chao LI, Fen ZHANG, Rong-Chang ZENG, Yu-Hong ZOU, Shuo-Qi LI. Biocorrosion resistance and biocompatibility of Mg--Al layered double hydroxide/poly(L-lactic acid) hybrid coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(4): 426-441.
[2] Lei CHANG, Xiangrui LI, Xuhui TANG, He ZHANG, Ding HE, Yujun WANG, Jiayin ZHAO, Jingan LI, Jun WANG, Shijie ZHU, Liguo WANG, Shaokang GUAN. Micro-patterned hydroxyapatite/silk fibroin coatings on Mg--Zn--Y--Nd--Zr alloys for better corrosion resistance and cell behavior guidance[J]. Front. Mater. Sci., 2020, 14(4): 413-425.
[3] Zheng-Zheng YIN, Wei HUANG, Xiang SONG, Qiang ZHANG, Rong-Chang ZENG. Self-catalytic degradation of iron-bearing chemical conversion coating on magnesium alloys ---- Influence of Fe content[J]. Front. Mater. Sci., 2020, 14(3): 296-313.
[4] Mengke PENG, Fenyan HU, Minting DU, Bingjie MAI, Shurong ZHENG, Peng LIU, Changhao WANG, Yashao CHEN. Hydrothermal growth of hydroxyapatite and ZnO bilayered nanoarrays on magnesium alloy surface with antibacterial activities[J]. Front. Mater. Sci., 2020, 14(1): 14-23.
[5] Wei WU, Fen ZHANG, Yu-Chao LI, Yong-Feng ZHOU, Qing-Song YAO, Liang SONG, Rong-Chang ZENG, Sie Chin TJONG, Dong-Chu CHEN. Corrosion resistance of a silane/ceria modified Mg--Al-layered double hydroxide on AA5005 aluminum alloy[J]. Front. Mater. Sci., 2019, 13(4): 420-430.
[6] Xiao-Jing JI, Qiang CHENG, Jing WANG, Yan-Bin ZHAO, Zhuang-Zhuang HAN, Fen ZHANG, Shuo-Qi LI, Rong-Chang ZENG, Zhen-Lin WANG. Corrosion resistance and antibacterial effects of hydroxyapatite coating induced by polyacrylic acid and gentamicin sulfate on magnesium alloy[J]. Front. Mater. Sci., 2019, 13(1): 87-98.
[7] Lian GUO, Fen ZHANG, Jun-Cai LU, Rong-Chang ZENG, Shuo-Qi LI, Liang SONG, Jian-Min ZENG. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys[J]. Front. Mater. Sci., 2018, 12(2): 198-206.
[8] Ling-Yu LI, Bin LIU, Rong-Chang ZENG, Shuo-Qi LI, Fen ZHANG, Yu-Hong ZOU, Hongwei (George) JIANG, Xiao-Bo CHEN, Shao-Kang GUAN, Qing-Yun LIU. In vitro corrosion of magnesium alloy AZ31 --- a synergetic influence of glucose and Tris[J]. Front. Mater. Sci., 2018, 12(2): 184-197.
[9] Mathew JOY, Srividhya J. IYENGAR, Jui CHAKRABORTY, Swapankumar GHOSH. Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium[J]. Front. Mater. Sci., 2017, 11(4): 395-409.
[10] Feng LI, Yang LIU, Xu-Bo LI. Dynamic recrystallization behavior of AZ31 magnesium alloy processed by alternate forward extrusion[J]. Front. Mater. Sci., 2017, 11(3): 296-305.
[11] Tao JIN,Fan-mei KONG,Rui-qin BAI,Ru-liang ZHANG. Anti-corrosion mechanism of epoxy-resin and different content Fe2O3 coatings on magnesium alloy[J]. Front. Mater. Sci., 2016, 10(4): 367-374.
[12] Na YI,Shanhu BAO,Huaijuan ZHOU,Yunchuan XIN,Aibin HUANG,Yining MA,Rong LI,Ping JIN. Preparation of microstructure-controllable superhydrophobic polytetrafluoroethylene porous thin film by vacuum thermal-evaporation[J]. Front. Mater. Sci., 2016, 10(3): 320-327.
[13] Li-Da HOU,Zhen LI,Yu PAN,MuhammadIqbal SABIR,Yu-Feng ZHENG,Li LI. A review on biodegradable materials for cardiovascular stent application[J]. Front. Mater. Sci., 2016, 10(3): 238-259.
[14] Yu-Hong ZOU,Rong-Chang ZENG,Qing-Zhao WANG,Li-Jun LIU,Qian-Qian XU,Chuang WANG,Zhiwei LIU. Blood compatibility of zinc–calcium phosphate conversion coating on Mg–1.33Li–0.6Ca alloy[J]. Front. Mater. Sci., 2016, 10(3): 281-289.
[15] Lan-Yue CUI,Rong-Chang ZENG,Xiao-Xiao ZHU,Ting-Ting PANG,Shuo-Qi LI,Fen ZHANG. Corrosion resistance of biodegradable polymeric layer-by-layer coatings on magnesium alloy AZ31[J]. Front. Mater. Sci., 2016, 10(2): 134-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed