Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2017, Vol. 11 Issue (3) : 296-305    https://doi.org/10.1007/s11706-017-0387-7
RESEARCH ARTICLE
Dynamic recrystallization behavior of AZ31 magnesium alloy processed by alternate forward extrusion
Feng LI(), Yang LIU, Xu-Bo LI
School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
 Download: PDF(670 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

One of the important factors that affect the microstructure and properties of extruded products is recrystallization behavior. Alternate forward extrusion (AFE) is a new type of metal extrusion process with strong potential. In this paper, we carried out the AFE process experiments of as-cast AZ31 magnesium alloy and obtained extrusion bar whose microstructure and deformation mechanism were analyzed by means of optical microscopy, electron backscattered diffraction and transmission electron microscopy. The experimental results indicated that homogeneous fine-grained structure with mean grain size of 3.91 μm was obtained after AFE at 573 K. The dominant reason of grain refinement was considered the dynamic recrystallization (DRX) induced by strain localization and shear plastic deformation. In the 573–673 K range, the yield strength, tensile strength and elongation of the composite mechanical properties are reduced accordingly with the increase of the forming temperature. Shown as in relevant statistics, the proportion of the large-angle grain boundaries decreased significantly. The above results provide an important scientific basis of the scheme formulation and active control on microstructure and property for AZ31 magnesium alloy AFE process.

Keywords magnesium alloy      alternate forward extrusion (AFE)      mechanical property      dynamic recrystallization     
Corresponding Author(s): Feng LI   
Online First Date: 01 August 2017    Issue Date: 24 August 2017
 Cite this article:   
Feng LI,Yang LIU,Xu-Bo LI. Dynamic recrystallization behavior of AZ31 magnesium alloy processed by alternate forward extrusion[J]. Front. Mater. Sci., 2017, 11(3): 296-305.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-017-0387-7
https://academic.hep.com.cn/foms/EN/Y2017/V11/I3/296
Fig.1  The schematic of AFE.
Chemical composition Content /wt.%
Al 3.20
Zn 0.86
Mn 0.36
Fe 0.0018
Si 0.021
Cu 0.0022
Ni 0.00056
Mg bal.
Tab.1  AZ31 magnesium alloy compositions
Fig.2  Dies structure and extruded products: (a) conventional die; (b) extrusion extrudate using traditional die; (c) oriented die; (d) extrusion extrudate using oriented die.
Fig.3  Microstructure of the different extrusion direction at different temperatures: (a) perpendicular to the ED (ND and TD plane) at 573 K; (b) perpendicular to the ED (ND and TD plane) at 623 K; (c) perpendicular to the ED (ND and TD plane) at 673 K; (d) along the extrusion direction plane (ED and TD plane) at 573 K; (e) along the extrusion direction plane (ED and TD plane) at 623 K; (f) along the extrusion direction plane (ED and TD plane) at 673 K.
Fig.4  The orientation maps of (a) 573 K, (b) 623 K and (c) 673 K. The misorientation angles of (d) 573 K, (e) 623 K and (f) 673 K.
Fig.5  Texture evolution under different temperatures: (a) 573 K; (b) 623 K; (c) 673 K.
Fig.6  The tensile samples (a) before and (b) after fracture. (c) The comparison of mechanical properties.
Fig.7  The fracture morphologies: (a) magnified 20 times at 573 K; (b) magnified 20 times at 623 K; (c) magnified 20 times at 673 K; (d) magnified 200 times at 573 K; (e) magnified 200 times at 623 K; (f) magnified 200 times at 673 K.
Fig.8  TEM images: (a) grain morphology at 573 K; (b) dynamic recrystallization at 573 K; (c) grain morphology at 623 K; (d) dislocation in grain at 623 K; (e) triple grain boundary at 673 K; (f) second phase particle at 673 K.
Fig.9  The solid evidence of DRX: (a) orientation map with superimposed hcp unit cells magnified from Fig. 4(a); (b)(c)(d) orientation maps magnified from Fig. 4(a), LAGBs in grains and the examples which indicate that HAGBs are connected by LAGBs (HAGBs are marked with black lines while LAGBs with misorientations of (2°–5°) and (5°–15°) are marked with white and blue lines, respectively).
1 Joost W J, Krajewski  P E. Towards magnesium alloys for high-volume automotive applications. Scripta Materialia, 2017, 128: 107–112
https://doi.org/10.1016/j.scriptamat.2016.07.035
2 Chen Q, Zhao  Z, Chen G , et al.. Effect of accumulative plastic deformation on generation of spheroidal structure, thixoformability and mechanical properties of large-size AM60 magnesium alloy. Journal of Alloys and Compounds, 2015, 632: 190–200
https://doi.org/10.1016/j.jallcom.2015.01.185
3 Zhao Z D, Chen  Q, Chao H Y , et al.. Microstructural evolution and tensile mechanical properties of thixoforged ZK60-Y magnesium alloys produced by two different routes. Materials & Design, 2010, 31(4): 1906–1916
https://doi.org/10.1016/j.matdes.2009.10.056
4 Alizadeh R, Mahmudi  R, Ngan A H W , et al.. Microstructure, texture, and superplasticity of a fine-grained Mg–Gd–Zr alloy processed by equal-channel angular pressing. Materials Science and Engineering A, 2016, 47(12): 6056–6069
5 Lin J B, Wang  X Y, Ren  W J, et al.. Enhanced strength and ductility due to microstructure refinement and texture weakening of the GW102K alloy by cyclic extrusion compression. Journal of Materials Science and Technology, 2016, 32(8): 783–789
https://doi.org/10.1016/j.jmst.2016.01.004
6 Figueiredo R B ,  Langdon T G . Development of structural heterogeneities in a magnesium alloy processed by high-pressure torsion. Materials Science and Engineering A, 2011, 528(13–14): 4500–4506
https://doi.org/10.1016/j.msea.2011.02.048
7 Fata A, Faraji  G, Mashhadi M M , et al.. Hottensile deformation and fracture behavior of ultrafine-grained AZ31 magnesium alloy processed by severe plastic deformation. Materials Science and Engineering A, 2016, 674: 9–17
https://doi.org/10.1016/j.msea.2016.07.117
8 Wang Q, Chen  Y, Liu M , et al.. Microstructure evolution of AZ series magnesium alloys during cyclic extrusion compression. Materials Science and Engineering A, 2010, 527(9): 2265–2273
https://doi.org/10.1016/j.msea.2009.11.065
9 Kaseem M, Chung  B K, Yang  H W, et al.. Effect of deformation temperature on microstructure and mechanical properties of AZ31 Mg alloy processed by differential-speed rolling. Journal of Materials Science and Technology, 2015, 31(5): 498–503
https://doi.org/10.1016/j.jmst.2014.08.016
10 Li F, Zeng  X, Cao G J . Investigation of microstructure characteristics of the CVCDEed AZ31 magnesium alloy. Materials Science and Engineering A, 2015, 639: 395–401
https://doi.org/10.1016/j.msea.2015.05.042
11 Sepahi-Boroujeni S ,  Fereshteh-Saniee F . Expansion equal channel angular extrusion, as a novel severe plastic deformation technique. Journal of Materials Science, 2015, 50(11): 3908–3919
https://doi.org/10.1007/s10853-015-8937-9
12 Hu H J, Wang  H, Zhai Z Y , et al.. The influences of shear deformation on the evolutions of the extrusion shear for magnesium alloy. International Journal of Advanced Manufacturing Technology, 2014, 74(1–4): 423–432
https://doi.org/10.1007/s00170-014-5999-9
13 Orlov D, Raab  G, Lamark T T , et al.. Improvement of mechanical properties of magnesium alloy ZK60 by integrated extrusion and equal channel angular pressing. Acta Materialia, 2011, 59(1): 375–385
https://doi.org/10.1016/j.actamat.2010.09.043
14 Orlov D, Ralston  K D, Birbilis  N, et al.. Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing. Acta Materialia, 2011, 59(15): 6176–6186
https://doi.org/10.1016/j.actamat.2011.06.033
15 Shahbaz M, Pardis  N, Ebrahimi R , et al.. A novel single pass severe plastic deformation technique: Vortex extrusion. Materials Science and Engineering A, 2011, 530(1): 469–472
https://doi.org/10.1016/j.msea.2011.09.114
16 Yang X, Miura  H, Sakai T , et al.. Dynamic evolution of new grains in magnesium alloy AZ31 during hot deformation. Materials Transactions, 2003, 44(1): 197–203
https://doi.org/10.2320/matertrans.44.197
17 Yang Q, Jiang  B, Tian Y , et al.. A tilted weak texture processed by an asymmetric extrusion for magnesium alloy sheets. Materials Letters, 2013, 100: 29–31
https://doi.org/10.1016/j.matlet.2013.02.118
18 Yang Q, Jiang  B, He J , et al.. Tailoring texture and refining grain of magnesium alloy by differential speed extrusion process. Materials Science and Engineering A, 2014, 612: 187–191
https://doi.org/10.1016/j.msea.2014.06.045
19 Wang C P, Li  F G, Li  Q H, et al.. Numerical and experimental studies of pure copper processed by a new severe plastic deformation method. Materials Science and Engineering A, 2012, 548(3): 19–26
20 Khoddam S, Farhoumand  A, Hodgson P D . Axi-symmetric forward spiral extrusion, a kinematic and experimental study. Materials Science and Engineering A, 2011, 528(3): 1023–1029
https://doi.org/10.1016/j.msea.2010.09.062
21 Al-Samman T, Li  X, Chowdhury S G . Orientation dependent slip and twinning during compression and tension of strongly textured magnesium AZ31 alloy. Materials Science and Engineering A, 2010, 527(15): 3450–3463
https://doi.org/10.1016/j.msea.2010.02.008
[1] Xiang SUN, Qing-Song YAO, Yu-Chao LI, Fen ZHANG, Rong-Chang ZENG, Yu-Hong ZOU, Shuo-Qi LI. Biocorrosion resistance and biocompatibility of Mg--Al layered double hydroxide/poly(L-lactic acid) hybrid coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(4): 426-441.
[2] Lei CHANG, Xiangrui LI, Xuhui TANG, He ZHANG, Ding HE, Yujun WANG, Jiayin ZHAO, Jingan LI, Jun WANG, Shijie ZHU, Liguo WANG, Shaokang GUAN. Micro-patterned hydroxyapatite/silk fibroin coatings on Mg--Zn--Y--Nd--Zr alloys for better corrosion resistance and cell behavior guidance[J]. Front. Mater. Sci., 2020, 14(4): 413-425.
[3] Zheng-Zheng YIN, Wei HUANG, Xiang SONG, Qiang ZHANG, Rong-Chang ZENG. Self-catalytic degradation of iron-bearing chemical conversion coating on magnesium alloys ---- Influence of Fe content[J]. Front. Mater. Sci., 2020, 14(3): 296-313.
[4] Zai-Meng QIU, Fen ZHANG, Jun-Tong CHU, Yu-Chao LI, Liang SONG. Corrosion resistance and hydrophobicity of myristic acid modified Mg--Al LDH/Mg(OH)2 steam coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(1): 96-107.
[5] Mengke PENG, Fenyan HU, Minting DU, Bingjie MAI, Shurong ZHENG, Peng LIU, Changhao WANG, Yashao CHEN. Hydrothermal growth of hydroxyapatite and ZnO bilayered nanoarrays on magnesium alloy surface with antibacterial activities[J]. Front. Mater. Sci., 2020, 14(1): 14-23.
[6] Xiao-Jing JI, Qiang CHENG, Jing WANG, Yan-Bin ZHAO, Zhuang-Zhuang HAN, Fen ZHANG, Shuo-Qi LI, Rong-Chang ZENG, Zhen-Lin WANG. Corrosion resistance and antibacterial effects of hydroxyapatite coating induced by polyacrylic acid and gentamicin sulfate on magnesium alloy[J]. Front. Mater. Sci., 2019, 13(1): 87-98.
[7] Zhicun WANG, Xiaoman HAN, Yixi WANG, Kenan MEN, Lin CUI, Jianning WU, Guihua MENG, Zhiyong LIU, Xuhong GUO. Facile preparation of low swelling, high strength, self-healing and pH-responsive hydrogels based on the triple-network structure[J]. Front. Mater. Sci., 2019, 13(1): 54-63.
[8] Lian GUO, Fen ZHANG, Jun-Cai LU, Rong-Chang ZENG, Shuo-Qi LI, Liang SONG, Jian-Min ZENG. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys[J]. Front. Mater. Sci., 2018, 12(2): 198-206.
[9] Ling-Yu LI, Bin LIU, Rong-Chang ZENG, Shuo-Qi LI, Fen ZHANG, Yu-Hong ZOU, Hongwei (George) JIANG, Xiao-Bo CHEN, Shao-Kang GUAN, Qing-Yun LIU. In vitro corrosion of magnesium alloy AZ31 --- a synergetic influence of glucose and Tris[J]. Front. Mater. Sci., 2018, 12(2): 184-197.
[10] Xian-Ping WANG,Yi ZHANG,Yu XIA,Wei-Bing JIANG,Hui LIU,Wang LIU,Yun-Xia GAO,Tao ZHANG,Qian-Feng FANG. Enhanced micro-vibration sensitive high-damping capacity and mechanical strength achieved in Al matrix composites reinforced with garnet-like lithium electrolyte[J]. Front. Mater. Sci., 2017, 11(1): 75-81.
[11] Tao JIN,Fan-mei KONG,Rui-qin BAI,Ru-liang ZHANG. Anti-corrosion mechanism of epoxy-resin and different content Fe2O3 coatings on magnesium alloy[J]. Front. Mater. Sci., 2016, 10(4): 367-374.
[12] Li-Da HOU,Zhen LI,Yu PAN,MuhammadIqbal SABIR,Yu-Feng ZHENG,Li LI. A review on biodegradable materials for cardiovascular stent application[J]. Front. Mater. Sci., 2016, 10(3): 238-259.
[13] Yu-Hong ZOU,Rong-Chang ZENG,Qing-Zhao WANG,Li-Jun LIU,Qian-Qian XU,Chuang WANG,Zhiwei LIU. Blood compatibility of zinc–calcium phosphate conversion coating on Mg–1.33Li–0.6Ca alloy[J]. Front. Mater. Sci., 2016, 10(3): 281-289.
[14] Lan-Yue CUI,Rong-Chang ZENG,Xiao-Xiao ZHU,Ting-Ting PANG,Shuo-Qi LI,Fen ZHANG. Corrosion resistance of biodegradable polymeric layer-by-layer coatings on magnesium alloy AZ31[J]. Front. Mater. Sci., 2016, 10(2): 134-146.
[15] Qianli HUANG,Xujie LIU,Xing YANG,Ranran ZHANG,Zhijian SHEN,Qingling FENG. Specific heat treatment of selective laser melted Ti–6Al–4V for biomedical applications[J]. Front. Mater. Sci., 2015, 9(4): 373-381.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed