Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2017, Vol. 11 Issue (1) : 75-81    https://doi.org/10.1007/s11706-017-0363-2
RESEARCH ARTICLE
Enhanced micro-vibration sensitive high-damping capacity and mechanical strength achieved in Al matrix composites reinforced with garnet-like lithium electrolyte
Xian-Ping WANG1(),Yi ZHANG1,2,Yu XIA1,Wei-Bing JIANG1,Hui LIU1,Wang LIU1,Yun-Xia GAO1,Tao ZHANG1,Qian-Feng FANG1
1. Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
2. School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
 Download: PDF(261 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel micro-vibration sensitive-type high-damping Al matrix composites reinforced with Li7−xLa3Zr2−xNbxO12 (LLZNO, x = 0.25) was designed and prepared using an advanced spark plasma sintering (SPS) technique. The damping capacity and mechanical properties of LLZNO/Al composites (LLZNO content: 0–40 wt.%) were found to be greatly improved by the LLZNO addition. The maximum damping capacity and the ultimate tensile strength (UTS) of LLZNO/Al composite can be respectively up to 0.033 and 101.2 MPa in the case of 20 wt.% LLZNO addition. The enhancement of damping and mechanical properties of the composites was ascribed to the intrinsic high-damping capacity and strengthening effects of hard LLZNO particulate. This investigation provides a new insight to sensitively suppress micro-vibration of payloads in the aerospace environment.

Keywords high-damping materials      micro-vibration sensitivity      LLZNO/Al metal matrix composites      mechanical property     
Corresponding Author(s): Xian-Ping WANG   
Online First Date: 14 December 2016    Issue Date: 22 January 2017
 Cite this article:   
Xian-Ping WANG,Yi ZHANG,Yu XIA, et al. Enhanced micro-vibration sensitive high-damping capacity and mechanical strength achieved in Al matrix composites reinforced with garnet-like lithium electrolyte[J]. Front. Mater. Sci., 2017, 11(1): 75-81.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-017-0363-2
https://academic.hep.com.cn/foms/EN/Y2017/V11/I1/75
Fig.1  High-damping capacity of the LLZNO ceramic around room temperature.
Fig.2  Comparison of powder XRD patterns for the pure LLZNO ceramic and LLNO/Al mixtures.
Fig.3  (a) Sintering pressure and temperature profiles of the SPS process for LLZNO/Al samples. (b) A sintered sample with thedimension of Ø 30 mm × 3 mm.
Fig.4  Evolution of damping capacity of a LLZNO-20 wt.%/Al composite under different heat treatment processes at a measuring frequency of 2 Hz.
Fig.5  (a) Temperature dependence of the damping capacity of LLZNO-y wt.%/Al with y = 10, 20, 30 and 40, respectively. (b) Variation of the maximum damping value of LLZNO/Al composites with the LLZNO concentration, showing a linear relationship between them.
Fig.6  Temperature dependence of damping capacity of LLZNO-ywt.%/Al with y = 40 under different strain magnitudes.
Fig.7  (a) Bulk tensile stress–strain curves of pure Al and LLZNO/Al composites with different ceramic concentrations (inset: dimensions of the test samples (unit: mm)). (b) Ultimate tensile strength (UTS) and (c) total elongation (TE) of LLZNO/Al composites with different ceramic concentrations.
1 Arnon S, Kopeika N S. Laser satellite communication network vibration effect and possible solutions. Proceedings of the IEEE, 1997, 85(10): 1646–1661
https://doi.org/10.1109/5.640772
2 Orszulik P R, Shan J J. Active vibration control using genetic algorithm-based system identification and positive position feedback. Smart Materials and Structures, 2012, 21: 1–10
3 Shi J X, Hirano R, Shimoda M. Design optimization of damping material-inlaid plates for vibration control. Composite Structures, 2016, 148: 50–58
https://doi.org/10.1016/j.compstruct.2016.03.057
4 Liu C C, Jing X J, Daley S, . Recent advances in micro-vibration isolation. Mechanical Systems and Signal Processing, 2015, 56–57: 55–80
https://doi.org/10.1016/j.ymssp.2014.10.007
5 Remedia M, Aglietti G S, Richardson G. Modelling the effect of electrical harness on microvibration response of structures. Acta Astronautica, 2015, 109: 88–102
https://doi.org/10.1016/j.actaastro.2014.12.017
6 Li W P, Huang H, Zhou X B, . Design and experiments of an active isolator for satellite micro-vibration. Chinese Journal of Aeronautics, 2014, 27(6): 1461–1468
https://doi.org/10.1016/j.cja.2014.10.012
7 Wang Z H, Jia Y H, Xu S J, . Active vibration suppression in flexible spacecraft with optical measurement. Aerospace Science and Technology, 2016, 55: 49–56
https://doi.org/10.1016/j.ast.2016.05.014
8 Nowick A S, Berry B S. Anelastic Relaxation in Crystalline Solids. New York/London: Academic Press, 1972
9 Yin F X, Iwasaki S, Ping D H, . Snoek-type high-damping alloys realized in β-Ti alloys with high oxygen solid solution. Advanced Materials, 2006, 18(12): 1541–1544
https://doi.org/10.1002/adma.200600128
10 Wang W G, Li C, Li Y L, . Damping properties of Li5La3Ta2O12 particulates reinforced aluminum matrix composites. Materials Science and Engineering A, 2009, 518(1–2): 190–193
https://doi.org/10.1016/j.msea.2009.04.002
11 Geiger C A, Alekseev E, Lazic B, . Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorganic Chemistry, 2011, 50(3): 1089–1097
https://doi.org/10.1021/ic101914e pmid: 21188978
12 Murugan R, Ramakumar S, Janani N. High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet. Electrochemistry Communications, 2011, 13(12): 1373–1375
https://doi.org/10.1016/j.elecom.2011.08.014
13 Xia Y, Wang X P, Gao Y X, . Correlation of lithium ionic diffusion with Nb concentration in Li7−xLa3Zr2−xNbxO12 eva-luated by internal friction method. Chinese Physics Letters, 2014, 31(1): 016201
https://doi.org/10.1088/0256-307X/31/1/016201
14 Wang X P, Gao Y X, Xia Y P, . Correlation and the mechanism of lithium ion diffusion with the crystal structure of Li7La3Zr2O12 revealed by an internal friction technique. Physical Chemistry Chemical Physics, 2014, 16(15): 7006–7014
https://doi.org/10.1039/c3cp55515a pmid: 24604069
15 Zhang X Q, Liao L H, Ma N H, . Mechanical properties and damping capacity of magnesium matrix composites. Composites Part A: Applied Science and Manufacturing, 2006, 37(11): 2011–2016
https://doi.org/10.1016/j.compositesa.2005.12.007
[1] Zhicun WANG, Xiaoman HAN, Yixi WANG, Kenan MEN, Lin CUI, Jianning WU, Guihua MENG, Zhiyong LIU, Xuhong GUO. Facile preparation of low swelling, high strength, self-healing and pH-responsive hydrogels based on the triple-network structure[J]. Front. Mater. Sci., 2019, 13(1): 54-63.
[2] Feng LI, Yang LIU, Xu-Bo LI. Dynamic recrystallization behavior of AZ31 magnesium alloy processed by alternate forward extrusion[J]. Front. Mater. Sci., 2017, 11(3): 296-305.
[3] Qianli HUANG,Xujie LIU,Xing YANG,Ranran ZHANG,Zhijian SHEN,Qingling FENG. Specific heat treatment of selective laser melted Ti–6Al–4V for biomedical applications[J]. Front. Mater. Sci., 2015, 9(4): 373-381.
[4] Hui-Li DING,Tao ZHANG,Rui GAO,Xian-Ping WANG,Qian-Feng FANG,Chang-Song LIU,Jin-Ping SUO. Low-temperature mechanical and magnetic properties of the reduced activation martensitic steel[J]. Front. Mater. Sci., 2015, 9(3): 264-271.
[5] Rong SONG,De-Bao LIU,Yi-Chi LIU,Wen-Bo ZHENG,Yue ZHAO,Min-Fang CHEN. Effect of corrosion on mechanical behaviors of Mg--Zn--Zr alloy in simulated body fluid[J]. Front. Mater. Sci., 2014, 8(3): 264-270.
[6] N. RAGHAVENDRA, H. N. NARASIMHA MURTHY, M. KRISHNA, K. R. VISHNU MAHESH, R. SRIDHAR, S. FIRDOSH, G. ANGADI, S. C. SHARMA. Mechanical behavior of organo-modified Indian bentonite nanoclay fiber-reinforced plastic nanocomposites[J]. Front Mater Sci, 2013, 7(4): 396-404.
[7] Wen-Guang GUO, Zhi-Ye QIU, Han CUI, Chang-Ming WANG, Xiao-Jun ZHANG, In-Seop LEE, Yu-Qi DONG, Fu-Zhai CUI. Strength and fatigue properties of three-step sintered dense nanocrystal hydroxyapatite bioceramics[J]. Front Mater Sci, 2013, 7(2): 190-195.
[8] Chang-An WANG, Ming-Fu WANG. Thermal shock behavior of ZrB2--SiC ceramics with different quenching media[J]. Front Mater Sci, 2013, 7(2): 184-189.
[9] Xiao-Yan ZHANG, Yu-Fei MA, Yong-Gang LI, Pin-Pin WANG, Yuan-Liang WANG, Yan-Feng LUO. Enhanced mechanical properties of linear segmented shape memory poly(urethane-urea) by incorporating flexible PEG400 and rigid piperazine[J]. Front Mater Sci, 2012, 6(4): 326-337.
[10] Shuigen HUANG, Kim VANMEENSEL, Omer VAN DER BIEST, Jozef VLEUGELS. Sintering, thermal stability and mechanical properties of ZrO2-WC composites obtained by pulsed electric current sintering[J]. Front Mater Sci, 2011, 5(1): 50-56.
[11] San-bao LIN, Jian-ling SONG, Guang-chao MA, Chun-li YANG. Dissimilar metals TIG welding-brazing of aluminum alloy to galvanized steel[J]. Front Mater Sci Chin, 2009, 3(1): 78-83.
[12] HU Weiping, CHEN Hao, ZHONG Yunlong, SONG Jia, GOTTSTEIN Günter. Investigations on NiAl composites fabricated by matrix coated single crystalline AlO-fibers with and without hBN interlayer[J]. Front. Mater. Sci., 2008, 2(2): 182-193.
[13] SUN Guoyuan, CHEN Guang, CHEN Guoliang. Enhanced plasticity of Zr-based bulk metallic glass composite by in situ formed β-Zr dendritics[J]. Front. Mater. Sci., 2007, 1(1): 114-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed