Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2015, Vol. 9 Issue (3) : 264-271    https://doi.org/10.1007/s11706-015-0302-z
RESEARCH ARTICLE
Low-temperature mechanical and magnetic properties of the reduced activation martensitic steel
Hui-Li DING1,Tao ZHANG1,*(),Rui GAO1,Xian-Ping WANG1,Qian-Feng FANG1,*(),Chang-Song LIU1,Jin-Ping SUO2
1. Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
2. School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(3230 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Mechanical and magnetic properties as well as their relationship in the reduced activation martensitic (RAM) steel were investigated in the temperature range from --90°C to 20°C. Charpy impact tests show that the ductile-to-brittle transition temperature (DBTT) of the RAM steel is about --60°C. Low-temperature tensile tests show that the yield strength, ultimate tensile strength and total elongation values increase as temperature decreases, indicating that the strength and plasticity below the DBTT are higher than those above the DBTT. The coercive field (HC) in the scale of logarithm decreases linearly with the increasing temperature and the absolute value of the slope of lnHC versus temperature above the DBTT is obviously larger than that below the DBTT, also confirmed in the T91 steel. The results indicate that the non-destructive magnetic measurement is a promising candidate method for the DBTT detection of ferromagnetic steels.

Keywords reduced activation martensitic (RAM) steel      ductile-to-brittle transition temperature (DBTT)      mechanical property      magnetic property      non-destructive detection     
Corresponding Author(s): Tao ZHANG,Qian-Feng FANG   
Online First Date: 02 June 2015    Issue Date: 23 July 2015
 Cite this article:   
Hui-Li DING,Tao ZHANG,Rui GAO, et al. Low-temperature mechanical and magnetic properties of the reduced activation martensitic steel[J]. Front. Mater. Sci., 2015, 9(3): 264-271.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-015-0302-z
https://academic.hep.com.cn/foms/EN/Y2015/V9/I3/264
Fig.1  OM images of the RAM steel at different magnification.
Fig.2  The TEM image for the microstructure of the RAM steel and the EDS analysis of particles.
Fig.3  Engineering stress–strain curves of the RAM steel tested at different temperatures.
Fig.4  Variations of YS, UTS and TE with the tensile temperature.
Fig.5  SEM images of the fracture section for the RAM tensile-tested at different temperatures: (a) 20°C; (b) -60°C; (c) -70°C; (d) -90°C.
Fig.6  SEM images of the fractured surfaces for the RAM steel Charpy-impact tested at two temperatures: (a) 10°C; (b) -70°C.
Fig.7  The coercive field and the Charpy impact absorbed energy for the RAM steel at different temperatures.
Fig.8  The coercive field and the Charpy impact absorbed energy for the T91 steel at different temperatures.
CLAMChina low activation martensitic
DBTTductile-to-brittle transition temperature
EDSenergy dispersive<?Pub Caret?> X-ray spectrometry
ESRelectroslag remelting
HRTEMhigh resolution transmission electron microscopy
OMoptical microscopy
RAFMreduced activation ferritic/martensitic
RAMreduced activation martensitic
SEMscanning electron microscopy
SQUIDsuperconductivity quantum interference device
TEtotal elongation
TEMtransmission electron microscopy
UTSultimate tensile strength
VIMvacuum induction melting
YSyield strength
Tab.1  
1 Klueh R L. Reduced-activation steels: Future development for improved creep strength. Journal of Nuclear Materials, 2008, 378(2): 159-166
2 Baluc N, Gelles D S, Jitsukawa S, . Status of reduced activation ferritic/martensitic steel development. Journal of Nuclear Materials, 2007, 367-370: 33-41
3 Xiong X S, Yang F, Zou X R, . Effect of twice quenching and tempering on the mechanical properties and microstructures of RAM steel for fusion application. Journal of Nuclear Materials, 2012, 430(1-3): 114-118
4 Yang M, Li H X, Qi L Z, . Effect of strain on microstructures and mechanical properties of warmly deformed RAM steel for fusion application. Advanced Materials Research, 2014, 3226(941-944): 1463-1468
5 Talonen J, Aspegren P, Hanninen H. Comparison of different methods for measuring strain induced α-martensite content in austenitic steels. Materials Science and Technology, 2004, 20(12): 1506-1512
6 Morito S, Yoshida H, Maki T, . Effect of block size on the strength of lath marentsite in low carbon steels. Materials Science and Engineering A, 2006, 438-440: 237-240
7 Naylor J P. Influence of the lath morphology on the yield strength and transition temperature of martensitic-bainitic steels. Metallurgical Transactions A, 1979, 10(7): 861-873
8 Smith D W, Hehemann R F. The influence of structural parameters on the yield strength of tempered martensite and lower bainite. JISI Institute, 1971, 209: 476-481
9 Lu C X, Suo J P, . Effect of annealing temperature on microstructures and properties of warmly deformed RAM steel. Applied Mechanics and Materials, 2014, 3254(575): 315-321
10 Cullity B D. Introduction to Magnetic Materials. Boston, MA: Addison-Wesley, 1972
11 Martinez-de-Guerenu A, Arizti F, Gutierrez I. Recovery during annealing in a cold rolled low carbon steel. Part II: Modelling the kinetics. Acta Materialia, 2004, 52(12): 3665-3670
12 Takahashi S, Kobayashi S, Kikuchi H, . Relationship between mechanical and magnetic properties in cold rolled low carbon steel. Journal of Applied Physics, 2006, 100(11): 113908
13 Kikuchi H, Harada M, Ara K, . Development of apparatus for magnetic measurements of Charpy impact test pieces. Journal of Materials Processing Technology, 2007, 181(1-3): 190-193
14 Myeong T H, Yamabayashi Y, Shimojo M, . A new life extension method for high cycle fatigue using micro-martensitic transformation in austenitic stainless steels. International Journal of Fatigue, 1997, 19(93): 69-73
15 Byun T S, Farrell K, Hashimoto N. Plastic instability behavior of bcc and hcp metals after low temperature neutron irradiation. Journal of Nuclear Materials, 2004, 329-333: 998-1002
16 Barat K, Bar H N, Mandal D, . Low temperature tensile deformation and acoustic emission signal characteristics of AISI 304LN stainless steel. Materials Science and Engineering A, 2014, 597: 37-45
17 Byun S, Hashimoto N, Farrell K. Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels. Acta Materialia, 2004, 52(13): 3889-3899
18 Zhang C Y, Wang Q F, Ren J X, . Effect of martensitic morphology on mechanical properties of an as-quenched and tempered 25CrMo48V steel. Materials Science and Engineering A, 2012, 534: 339-346
19 Langford G, Cohen M. Strain hardening of iron by severe plastic deformation. ASM Transactions Quarterly, 1969, 62(3): 623-638
20 Wang C F, Wang M Q, Shi J, . Effect of microstructural refinement on the toughness of low carbon martensitic steel. Scripta Materialia, 2008, 58(6): 492-495
21 Lo C C H, Scruby C B. Study of magnetization processes and the generation of magnetoacoustic and Barkhausen emissions. Journal of Applied Physics, 1999, 85(8): 5193-5195
22 Hasanyan D J, Harutyunyan S. Magnetoelastic interactions in a soft ferromagnetic body with a nonlinear law of magnetization: Some applications. International Journal of Solids and Structures, 2009, 46(10): 2172-2185
[1] Zhicun WANG, Xiaoman HAN, Yixi WANG, Kenan MEN, Lin CUI, Jianning WU, Guihua MENG, Zhiyong LIU, Xuhong GUO. Facile preparation of low swelling, high strength, self-healing and pH-responsive hydrogels based on the triple-network structure[J]. Front. Mater. Sci., 2019, 13(1): 54-63.
[2] Feng LI, Yang LIU, Xu-Bo LI. Dynamic recrystallization behavior of AZ31 magnesium alloy processed by alternate forward extrusion[J]. Front. Mater. Sci., 2017, 11(3): 296-305.
[3] Xian-Ping WANG,Yi ZHANG,Yu XIA,Wei-Bing JIANG,Hui LIU,Wang LIU,Yun-Xia GAO,Tao ZHANG,Qian-Feng FANG. Enhanced micro-vibration sensitive high-damping capacity and mechanical strength achieved in Al matrix composites reinforced with garnet-like lithium electrolyte[J]. Front. Mater. Sci., 2017, 11(1): 75-81.
[4] Qianli HUANG,Xujie LIU,Xing YANG,Ranran ZHANG,Zhijian SHEN,Qingling FENG. Specific heat treatment of selective laser melted Ti–6Al–4V for biomedical applications[J]. Front. Mater. Sci., 2015, 9(4): 373-381.
[5] Yongze CAO,Qiang WANG,Guojian LI,Yonghui MA,Jiaojiao DU,Jicheng HE. Effects of different magnetic flux densities on microstructure and magnetic properties of molecular-beam-vapor-deposited nanocrystalline Fe64Ni36 thin films[J]. Front. Mater. Sci., 2015, 9(2): 163-169.
[6] Rong SONG,De-Bao LIU,Yi-Chi LIU,Wen-Bo ZHENG,Yue ZHAO,Min-Fang CHEN. Effect of corrosion on mechanical behaviors of Mg--Zn--Zr alloy in simulated body fluid[J]. Front. Mater. Sci., 2014, 8(3): 264-270.
[7] N. RAGHAVENDRA, H. N. NARASIMHA MURTHY, M. KRISHNA, K. R. VISHNU MAHESH, R. SRIDHAR, S. FIRDOSH, G. ANGADI, S. C. SHARMA. Mechanical behavior of organo-modified Indian bentonite nanoclay fiber-reinforced plastic nanocomposites[J]. Front Mater Sci, 2013, 7(4): 396-404.
[8] Wen-Guang GUO, Zhi-Ye QIU, Han CUI, Chang-Ming WANG, Xiao-Jun ZHANG, In-Seop LEE, Yu-Qi DONG, Fu-Zhai CUI. Strength and fatigue properties of three-step sintered dense nanocrystal hydroxyapatite bioceramics[J]. Front Mater Sci, 2013, 7(2): 190-195.
[9] Chang-An WANG, Ming-Fu WANG. Thermal shock behavior of ZrB2--SiC ceramics with different quenching media[J]. Front Mater Sci, 2013, 7(2): 184-189.
[10] Xiao-Yan ZHANG, Yu-Fei MA, Yong-Gang LI, Pin-Pin WANG, Yuan-Liang WANG, Yan-Feng LUO. Enhanced mechanical properties of linear segmented shape memory poly(urethane-urea) by incorporating flexible PEG400 and rigid piperazine[J]. Front Mater Sci, 2012, 6(4): 326-337.
[11] Akimasa KOJI, Javed IQBAL, Rong-Hai YU, Zheng-Jun ZHANG. Synthesis temperature dependence of morphologies and properties of cobalt oxide and silicon nanocrystals[J]. Front Mater Sci, 2011, 5(3): 311-321.
[12] Shuigen HUANG, Kim VANMEENSEL, Omer VAN DER BIEST, Jozef VLEUGELS. Sintering, thermal stability and mechanical properties of ZrO2-WC composites obtained by pulsed electric current sintering[J]. Front Mater Sci, 2011, 5(1): 50-56.
[13] San-bao LIN, Jian-ling SONG, Guang-chao MA, Chun-li YANG. Dissimilar metals TIG welding-brazing of aluminum alloy to galvanized steel[J]. Front Mater Sci Chin, 2009, 3(1): 78-83.
[14] HU Weiping, CHEN Hao, ZHONG Yunlong, SONG Jia, GOTTSTEIN Günter. Investigations on NiAl composites fabricated by matrix coated single crystalline AlO-fibers with and without hBN interlayer[J]. Front. Mater. Sci., 2008, 2(2): 182-193.
[15] SHI Ya, LI Zheng-cao, MIAO Wei, WANG Yu-quan, ZHANG Zheng-jun, XU Chun-hua. Magnetic and optical properties of polycarbonate/Fe nanocomposites[J]. Front. Mater. Sci., 2008, 2(1): 16-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed