Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2015, Vol. 9 Issue (4) : 373-381    https://doi.org/10.1007/s11706-015-0315-7
RESEARCH ARTICLE
Specific heat treatment of selective laser melted Ti–6Al–4V for biomedical applications
Qianli HUANG,Xujie LIU,Xing YANG,Ranran ZHANG,Zhijian SHEN,Qingling FENG()
Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
 Download: PDF(1763 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The ductility of as-fabricated Ti–6Al–4V falls far short of the requirements for biomedical titanium alloy implants and the heat treatment remains the only applicable option for improvement of their mechanical properties. In the present study, the decomposition of as-fabricated martensite was investigated to provide a general understanding on the kinetics of its phase transformation. The decomposition of as-fabricated martensite was found to be slower than that of water-quenched martensite. It indicates that specific heat treatment strategy is needed to be explored for as-fabricated Ti–6Al–4V. Three strategies of heat treatment were proposed based on different phase transformation mechanisms and classified as subtransus treatment, supersolvus treatment and mixed treatment. These specific heat treatments were conducted on selective laser melted samples to investigate the evolutions of microstructure and mechanical properties. The subtransus treatment leaded to a basket-weave structure without changing the morphology of columnar prior β grains. The supersolvus treatment resulted in a lamellar structure and equiaxed β grains. The mixed treatment yielded a microstructure that combines both features of the subtransus treatment and supersolvus treatment. The subtransus treatment is found to be the best choice among these three strategies for as-fabricated Ti–6Al–4V to be used as biomedical implants.

Keywords mechanical property      titanium alloy      selective laser melting (SLM)      heat treatment      microstructure     
Corresponding Author(s): Qingling FENG   
Online First Date: 29 October 2015    Issue Date: 12 November 2015
 Cite this article:   
Qianli HUANG,Xujie LIU,Xing YANG, et al. Specific heat treatment of selective laser melted Ti–6Al–4V for biomedical applications[J]. Front. Mater. Sci., 2015, 9(4): 373-381.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-015-0315-7
https://academic.hep.com.cn/foms/EN/Y2015/V9/I4/373
Group T /°C t /h Cooling mode
Subtransus treatment 800 2 AC/FC
950 2 AC/FC
Supersolvus treatment 1050 1 AC
1200 1 AC
Mixed treatment 1050 1 WQ
followed by
950 2 AC
Mixed treatment 1050 1 WQ
followed by
990 0.5 AC
Tab.1  Sample grouping and relevant parameters
Fig.1  Microstructure of as-fabricated Ti–6Al–4V samples tempering treated at 800°C for (a) 0 min, (b) 10 min, (c) 20?min, and (d) 4 h followed by air cooling.
Fig.2  Plot of hardness evolution with tempering time at 800°C followed by air cooling.
Fig.3  Microstructure of the as-fabricated Ti–6Al–4V tempering treated at 800°C for 2 h followed by (a) furnace cooling and (b) air cooling.
Fig.4  Microstructure of the as-fabricated Ti–6Al–4V tempering treated at 950°C for 2 h followed by (a) furnace cooling and (b)(c) air cooling.
Fig.5  Microstructure of the as-fabricated Ti–6Al–4V tempering treated at (a) 800°C and (b) 950°C for 2 h followed by air cooling.
Fig.6  Microstructure of the as-fabricated Ti–6Al–4V heat treated at (a)(b) 1050°C and (c)(d) 1200°C for 2 h followed by air cooling.
Fig.7  Microstructure of the as-fabricated Ti–6Al–4V solution treated at 1050°C for 1 h followed by water quenching and tempering treated at (a)(b) 950°C for 2 h and (c)(d) 990°C for 0.5 h followed by air cooling.
Fig.8  Engineering stress–strain curve of as-fabricated Ti–6Al–4V and heat-treated samples.
No. T /°C t /h Cooling mode UTS /MPa YS /MPa BE /%
1 1191±6 970±6 5.37±1.39
2 800 2 AC 1073±9 1010±11 17.05±1.14
3 950 2 AC 984±5 893±3 14.15±1.49
4 1050 1 AC 988±8 869±4 13.34±0.67
5 1200 1 AC 988±8 878±7 11.25±1.25
6 1050 1 WQ
followed by 962±12 838±6 11.96±0.07
990 0.5 AC
Tab.2  Mechanical properties of the SLM material after different heat treatments
Fig.9  Fracture surfaces of the tensile test specimens in different heat-treated states: (a) untreated; (b) 800°C/2 h/AC; (c) 950°C/ 1 h/AC; (d) 1050°C/1 h/AC; (e) 1200°C/1 h/AC; (f) 1050°C/1 h/WQ+ 990°C/0.5 h/AC.
Fig.10  EMPA results illustrating the element distribution of sample treated by treatment six (1050°C/1 h/WQ+ 990°C/0.5 h/AC): (a) micrograph showing the linear scanning path (along the red line and downward); (b) the element distribution of Al and V along scanning path.
1 Niinomi  M. Recent metallic materials for biomedical applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33(3): 477–486
2 Yang  X, Richard Liu  C. Machining titanium and its alloys. Machining Science and Technology, 1999, 3: 107–139
3 Murr  L E, Quinones  S A, Gaytan  S M, . Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. Journal of the Mechanical  Behavior  of  Biomedical  Materials,  2009,  2(1): 20–32
4 Vandenbroucke  B, Kruth  J P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyping Journal, 2007, 13(4): 196–203
5 Thijs  L, Verhaeghe  F, Craeghs  T, . A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Materialia, 2010, 58(9): 3303–3312
6 Kruth  J P, Badrossamay  M, Yasa  E, . Part and material properties in selective laser melting of metals. Proceedings of the 16th International Symposium on Electromachining, 2010
7 Hollander  D A, von Walter  M, Wirtz  T, . Structural, mechanical and in vitro characterization of individually structured Ti–6Al–4V produced by direct laser forming. Biomaterials, 2006, 27(7): 955–963
8 Rafi  H K, Karthik  N V, Gong  H, . Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting. Journal of Materials Engineering and Performance, 2013, 22: 1–12
9 ASTMF1472-08e1. Standard specification for wrought titanium-6aluminum-4vanadium alloy for surgical implant applications (UNS R56400), 2008
10 ASTMF1108-04. Standard specification for titanium-6aluminum-4vanadium alloy castings for surgical implants (UNS R56406), 2009
11 Semiatin  S L, Knisley  S L, Fagin  P N, . Microstructure evolution during α-β heat treatment of Ti–6Al–4V. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34(10): 2377–2386
12 Vrancken  B, Thijs  L, Kruth  J P, . Heat treatment of Ti6Al4V produced by selective laser Melting: microstructure and mechanical properties. Journal of Alloys and Compounds, 2012, 541: 177–185
13 Vilaro  T, Colin  C, Bartout  J D. As-fabricated and heat-treated microstructures of the Ti–6Al–4V alloy processed by selective laser melting. Metallurgical and materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42(10): 3190–3199
14 ASTME8/E8M-13a. Standard test methods for tension testing of metallic materials, 2013
15 Mur  F X G, Rodriguez  D, Planell  J A. Influence of tempering temperature and time on the α'-Ti–6Al–4V martensite. Journal of Alloys and Compounds, 1996, 234(2): 287–289
16 Qazi  J I, Senkov  O N, Rahim  J, . Kinetics of martensite decomposition in Ti–6Al–4V–xH alloys. Materials Science and Engineering A, 2003, 359: 137–149
17 Aeby-Gautier  E, Settefrati  A, Bruneseaux  F, . Isothermal α'' formation in β metastable titanium alloys. Journal of Alloys and Compounds, 2013, 577: S439–S443
18 Wang  S C, Aindow  M, Starink  M J. Effect of self-accommodation on α/α boundary populations in pure titanium. Acta Materialia, 2003, 51(9): 2485–2503
19 Lin  H C, Wu  S K, Chou  T S, . The effects of cold rolling on the martensitic transformation of an equiatomic TiNi alloy. Acta Metallurgica et Materialia, 1991, 39(9): 2069–2080
20 Segui  C, Cesari  E, Font  J, . Martensite stabilization in a high temperature Ni–Mn–Ga alloy. Scripta Materialia, 2005, 53(3): 315–318
21 Brandl  E, Greitemeier  D. Microstructure of additive layer manufactured Ti–6Al–4V after exceptional post heat treatments. Materials Letters, 2012, 81: 84–87
22 Lee  Y T, Welsch  G. Young’s modulus and damping of Ti–6Al–4V alloy as a function of heat treatment and oxygen concentration. Materials Science and Engineering A, 1990, 128(1): 77–89
23 Wegmann  G, Albrecht  J, Lütjering  G, . Microstructure and mechanical properties of titanium castings. Zeitschrift fur Metallkunde, 1997, 88: 764–773
24 Al-Bermani  S, Blackmore  M, Zhang  W, . The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti–6Al–4V. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41(13): 3422–3434
25 Lu  Y, Tang  H, Fang  Y, . Microstructure evolution of sub-critical annealed laser deposited Ti–6Al–4V alloy. Materials & Design, 2012, 37: 56–63
26 Lütjering  G, Williams  J. Titanium. 2nd ed. Berlin: Springer, 2003
27 Zhao  Y, Qu  H, Wang  M, . Thermal stability and creep behavior of Ti–V–Cr burn-resistant alloys. Journal of Alloys and Compounds, 2006, 407(1–2): 118–124
[1] Chengzhi LUO, Guanghui LIU, Min ZHANG. Electric-field-induced microstructure modulation of carbon nanotubes for high-performance supercapacitors[J]. Front. Mater. Sci., 2019, 13(3): 270-276.
[2] Zhicun WANG, Xiaoman HAN, Yixi WANG, Kenan MEN, Lin CUI, Jianning WU, Guihua MENG, Zhiyong LIU, Xuhong GUO. Facile preparation of low swelling, high strength, self-healing and pH-responsive hydrogels based on the triple-network structure[J]. Front. Mater. Sci., 2019, 13(1): 54-63.
[3] Feng LI, Yang LIU, Xu-Bo LI. Dynamic recrystallization behavior of AZ31 magnesium alloy processed by alternate forward extrusion[J]. Front. Mater. Sci., 2017, 11(3): 296-305.
[4] Abdollah SABOORI, Matteo PAVESE, Claudio BADINI, Paolo FINO. Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization[J]. Front. Mater. Sci., 2017, 11(2): 171-181.
[5] Xian-Ping WANG,Yi ZHANG,Yu XIA,Wei-Bing JIANG,Hui LIU,Wang LIU,Yun-Xia GAO,Tao ZHANG,Qian-Feng FANG. Enhanced micro-vibration sensitive high-damping capacity and mechanical strength achieved in Al matrix composites reinforced with garnet-like lithium electrolyte[J]. Front. Mater. Sci., 2017, 11(1): 75-81.
[6] Qianli HUANG,Ningmin HU,Xing YANG,Ranran ZHANG,Qingling FENG. Microstructure and inclusion of Ti–6Al–4V fabricated by selective laser melting[J]. Front. Mater. Sci., 2016, 10(4): 428-431.
[7] Rui GAO,Wen-jun GE,Shu MIAO,Tao ZHANG,Xian-ping WANG,Qian-feng FANG. Hot rolling and annealing effects on the microstructure and mechanical properties of ODS austenitic steel fabricated by electron beam selective melting[J]. Front. Mater. Sci., 2016, 10(1): 73-79.
[8] Hui-Li DING,Tao ZHANG,Rui GAO,Xian-Ping WANG,Qian-Feng FANG,Chang-Song LIU,Jin-Ping SUO. Low-temperature mechanical and magnetic properties of the reduced activation martensitic steel[J]. Front. Mater. Sci., 2015, 9(3): 264-271.
[9] Yongze CAO,Qiang WANG,Guojian LI,Yonghui MA,Jiaojiao DU,Jicheng HE. Effects of different magnetic flux densities on microstructure and magnetic properties of molecular-beam-vapor-deposited nanocrystalline Fe64Ni36 thin films[J]. Front. Mater. Sci., 2015, 9(2): 163-169.
[10] Masaaki TAKEZAWA,Hiroyuki TANEDA,Yuji MORIMOTO. Relationship between microstructure and magnetic domain structure of Nd--Fe--B melt-spun ribbon magnets[J]. Front. Mater. Sci., 2015, 9(2): 206-210.
[11] Peng-Cheng XIA,Feng-Wen CHEN,Kun XIE,Ling QIAO,Jin-Jiang YU. Influence of microstructures on thermal fatigue property of a nickel-base superalloy[J]. Front. Mater. Sci., 2015, 9(1): 85-92.
[12] Zhen-Tao YU,Ming-Hua ZHANG,Yu-Xing TIAN,Jun CHENG,Xi-Qun MA,Han-Yuan LIU,Chang WANG. Designation and development of biomedical Ti alloys with finer biomechanical compatibility in long-term surgical implants[J]. Front. Mater. Sci., 2014, 8(3): 219-229.
[13] Ya-Ming WANG,Jun-Wei GUO,Yun-Feng WU,Yan LIU,Jian-Yun CAO,Yu ZHOU,De-Chang JIA. Biocorrosion resistance of coated magnesium alloy by microarc oxidation in electrolyte containing zirconium and calcium salts[J]. Front. Mater. Sci., 2014, 8(3): 295-306.
[14] Rong SONG,De-Bao LIU,Yi-Chi LIU,Wen-Bo ZHENG,Yue ZHAO,Min-Fang CHEN. Effect of corrosion on mechanical behaviors of Mg--Zn--Zr alloy in simulated body fluid[J]. Front. Mater. Sci., 2014, 8(3): 264-270.
[15] N. RAGHAVENDRA, H. N. NARASIMHA MURTHY, M. KRISHNA, K. R. VISHNU MAHESH, R. SRIDHAR, S. FIRDOSH, G. ANGADI, S. C. SHARMA. Mechanical behavior of organo-modified Indian bentonite nanoclay fiber-reinforced plastic nanocomposites[J]. Front Mater Sci, 2013, 7(4): 396-404.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed