Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2016, Vol. 10 Issue (1) : 73-79    https://doi.org/10.1007/s11706-016-0327-y
RESEARCH ARTICLE
Hot rolling and annealing effects on the microstructure and mechanical properties of ODS austenitic steel fabricated by electron beam selective melting
Rui GAO1,Wen-jun GE2,Shu MIAO1,Tao ZHANG1,*(),Xian-ping WANG1,Qian-feng FANG1,*()
1. Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
2. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
 Download: PDF(1533 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The grain morphology, nano-oxide particles and mechanical properties of oxide dispersion strengthened (ODS)-316L austenitic steel synthesized by electron beam selective melting (EBSM) technique with different post-working processes, were explored in this study. The ODS-316L austenitic steel with superfine nano-sized oxide particles of 30–40 nm exhibits good tensile strength (412 MPa) and large total elongation (about 51%) due to the pinning effect of uniform distributed oxide particles on dislocations. After hot rolling, the specimen exhibits a higher tensile strength of 482 MPa, but the elongation decreases to 31.8% owing to the introduction of high-density dislocations. The subsequent heat treatment eliminates the grain defects induced by hot rolling and increases the randomly orientated grains, which further improves the strength and ductility of EBSM ODS-316L steel.

Keywords electron beam selective melting      ODS-316L steel powder      hot rolling      microstructure      tensile strength     
Corresponding Author(s): Tao ZHANG,Qian-feng FANG   
Online First Date: 25 December 2015    Issue Date: 15 January 2016
 Cite this article:   
Rui GAO,Wen-jun GE,Shu MIAO, et al. Hot rolling and annealing effects on the microstructure and mechanical properties of ODS austenitic steel fabricated by electron beam selective melting[J]. Front. Mater. Sci., 2016, 10(1): 73-79.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-016-0327-y
https://academic.hep.com.cn/foms/EN/Y2016/V10/I1/73
Sample Content /wt.%
C Cr Si Mn Ni Mo S O Fe
316L steel powder 0.03 16.0–18.0 ≤1.0 ≤1.0 11.52 2.0–3.0 ≤0.030 ≤0.030 bal.
Tab.1  Nominal chemical composition of commercial 316L steel powder
Sample Scan direction Layer thickness /μm Energy density /(109J?m−3) Relative density /% Scanning velocity /(m?s−1) Beam current /mA
EBSM-ODS-316L S+cross 100 200 96.5 0.2 8
Tab.2  The process parameters of ODS-316L steel fabrication
Fig.1  (a) The sketch of scanning strategies, (b) the photos of builds fabricated by EBSM and plates produced by SPS, (c) dimension of tensile specimen, and (d) the schematic view of the orientation of specimens cut from the parent materials for tensile test.
Fig.2  SEM images of (a) as-received 316L steel powders and (b) mixed powders. (c) Particle size distribution of the 316L steel powders and (d) EDS analysis showing the presence of Y2O3 particles.
Fig.3  A micrograph of ODS-316L steel from top view.
Fig.4  3D-OM images for different ODS-316L alloy components fabricated by (a) EBSM, (b) EBSM-HR, and (c) EBSM-HR-HT@800°C.
Fig.5  TEM images of microstructure for different ODS-316L specimen prepared by (a) EBSM, (b) EBSM-HR, and (c) EBSM-HR-HT@800°C (inset is the SAED of matrix). (d) EDS analysis of the Y2O3 particle and (e) the size distribution of nano-oxide particles in EBSM samples.
Fig.6  (a) Tensile stress–strain curves. Fracture images of (b) HR-ODS-316L steel and (c) HR-HT-ODS-316L steel.
Sample Tensile strength /MPa Total elongation /% Hardness /HV0.2
316L 312 38.5 120
EBSM-ODS-316L 410 51.2 146
EBSM-ODS-316L-HR 482 31.8 199
EBSM-ODS-316L-HR-HT 578 38.3 270
SPS-ODS-316L 348 17.8 142
Tab.3  Results of mechanical properties tested for different ODS-316L steels
Fig.7  SEM images of the side view of fracture surface for (a) HR-ODS-316L steel and (b) HR-HT-ODS-316L steel.
Fig.8  High-magnification SEM images of fracture section for (a) HR-ODS-316L steel and (b) HR-HT-ODS-316L steel.
EBMelectron beam melting
EBSMelectron beam selective melting
EDMelectric discharge machining
EDSenergy dispersive X-ray spectroscopy
HRhot rolling
HTheat treatment
ICP-OESinductively coupled plasma optical emission spectrometry
ODSoxide dispersion strengthened
OMoptical microscopy
RDrolling direction
RMrapid manufacturing
RPrapid prototyping
SAEDselected area electron diffraction
SEMscanning electron microscopy
SPSspark plasma sintering
TEtotal elongation
TEMtransmission electron microscopy
UTSultimate tensile strength
Tab.1  
1 Ishino  S. History, progress, achievements and future prospect of research activities on fusion materials by Japanese university researchers. Journal of Nuclear Materials, 1996, 233–237: 1535–1540
2 Robertson  C, Panigrahi  B K, Balaji  S, . Particle stability in model ODS steel irradiated up to 100 dpa at 600°C: TEM and nano-indentation investigation. Journal of Nuclear Materials, 2012, 426(1–3): 240–246
3 Kim  I S, Hunn  J D, Hashimoto  N, . Defect and void evolution in oxide dispersion strengthened ferritic steels under 3.2 MeV Fe+ ion irradiation with simultaneous helium injection. Journal of Nuclear Materials, 2000, 280(3): 264–274
4 Dai  L, Liu  Y C, Dong  Z Z. Size and structure evolution of yttria in ODS ferritic alloy powder during mechanical milling and subsequent annealing. Powder Technology, 2012, 217: 281–287
5 Alinger  M J, Odette  G R, Hoelzer  D T. On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostructured ferritic alloys. Acta Materialia, 2009, 57(2): 392–406
6 Rahmanifard  R, Farhangi  H, Novinrooz  A J. Optimization of mechanical alloying parameters in 12YWT ferritic steel nanocomposite. Materials Science and Engineering A, 2010, 527(26): 6853–6857
7 Yao  W, Niu  X, Zhou  L, . Competition growth of α and β phases in Ti-50 at.%Al peritectic alloy during the rapid solidification by laser melting technique. Acta Metallurgica Sinica (English Letters), 2013, 26(5): 523–532
8 Murr  L E, Gaytan  S M, Ceylan  A, . Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta Materialia, 2010, 58(5): 1887–1894
9 Hrabe  N, Quinn  T. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti–6Al–4V) fabricated using electron beam melting (EBM). Materials Science and Engineering A, 2013, 573: 271–277
10 Murr  L E, Gaytan  S M, Medina  F, . Characterization of Ti–6Al–4V open cellular foams fabricated by additive manufacturing using electron beam melting. Materials Science and Engineering A, 2010, 527(7–8): 1861–1868
11 Saresh  N, Pillai  M G, Mathew  J. Investigations into the effects of electron beam welding on thick Ti–6Al–4V titanium alloy. Journal of Materials Processing Technology, 2007, 192–193: 83–88
12 Luo  Y Y, Xi  Z P, Zeng  W D, . Characteristics of high-temperature deformation behavior of Ti–45Al–2Cr–3Ta–0.5W alloy mater. Journal of Materials Engineering and Performance, 2014, 23(10): 3577–3585
13 Lin  X, Yue  T M. Phase formation and microstructure evolution in laser rapid forming of graded SS316L/Rene88DT alloy. Materials Science and Engineering A, 2005, 402(1–2): 294–306
14 Milberg  J, Sigl  M. Electron beam sintering of metal powder. Production Engineering, 2008, 2(2): 117–122
15 Boegelein  T, Dryepondt  S N, Pandey  A, . Mechanical response and deformation mechanisms of ferritic oxide dispersion strengthened steel structures produced by selective laser melting. Acta Materialia, 2015, 87: 201–215
[1] Chengzhi LUO, Guanghui LIU, Min ZHANG. Electric-field-induced microstructure modulation of carbon nanotubes for high-performance supercapacitors[J]. Front. Mater. Sci., 2019, 13(3): 270-276.
[2] Heng CHEN, Yun CHEN, Hang ZHAN, Guang WU, Jian Ming XU, Jian Nong WANG. Preparation of carbon nanotube/epoxy composite films with high tensile strength and electrical conductivity by impregnation under pressure[J]. Front. Mater. Sci., 2019, 13(2): 165-173.
[3] Abdollah SABOORI, Matteo PAVESE, Claudio BADINI, Paolo FINO. Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization[J]. Front. Mater. Sci., 2017, 11(2): 171-181.
[4] Qianli HUANG,Ningmin HU,Xing YANG,Ranran ZHANG,Qingling FENG. Microstructure and inclusion of Ti–6Al–4V fabricated by selective laser melting[J]. Front. Mater. Sci., 2016, 10(4): 428-431.
[5] Qianli HUANG,Xujie LIU,Xing YANG,Ranran ZHANG,Zhijian SHEN,Qingling FENG. Specific heat treatment of selective laser melted Ti–6Al–4V for biomedical applications[J]. Front. Mater. Sci., 2015, 9(4): 373-381.
[6] Yongze CAO,Qiang WANG,Guojian LI,Yonghui MA,Jiaojiao DU,Jicheng HE. Effects of different magnetic flux densities on microstructure and magnetic properties of molecular-beam-vapor-deposited nanocrystalline Fe64Ni36 thin films[J]. Front. Mater. Sci., 2015, 9(2): 163-169.
[7] Masaaki TAKEZAWA,Hiroyuki TANEDA,Yuji MORIMOTO. Relationship between microstructure and magnetic domain structure of Nd--Fe--B melt-spun ribbon magnets[J]. Front. Mater. Sci., 2015, 9(2): 206-210.
[8] Peng-Cheng XIA,Feng-Wen CHEN,Kun XIE,Ling QIAO,Jin-Jiang YU. Influence of microstructures on thermal fatigue property of a nickel-base superalloy[J]. Front. Mater. Sci., 2015, 9(1): 85-92.
[9] Ya-Ming WANG,Jun-Wei GUO,Yun-Feng WU,Yan LIU,Jian-Yun CAO,Yu ZHOU,De-Chang JIA. Biocorrosion resistance of coated magnesium alloy by microarc oxidation in electrolyte containing zirconium and calcium salts[J]. Front. Mater. Sci., 2014, 8(3): 295-306.
[10] Zhen-Tao YU,Ming-Hua ZHANG,Yu-Xing TIAN,Jun CHENG,Xi-Qun MA,Han-Yuan LIU,Chang WANG. Designation and development of biomedical Ti alloys with finer biomechanical compatibility in long-term surgical implants[J]. Front. Mater. Sci., 2014, 8(3): 219-229.
[11] Zhi-Wen CHEN, Chan-Hung SHEK, C. M. Lawrence WU, Joseph K. L. LAI. Recent research situation in tin dioxide nanomaterials: synthesis, microstructures, and properties[J]. Front Mater Sci, 2013, 7(3): 203-226.
[12] Wei YAN, Wei WANG, Yi-Yin SHAN, Ke YANG. Microstructural stability of 9--12%Cr ferrite/martensite heat-resistant steels[J]. Front Mater Sci, 2013, 7(1): 1-27.
[13] Hai-Jun LEI, Bin LIU, Dai-Ning FANG, . The coefficient of thermal expansion of biomimetic composites[J]. Front. Mater. Sci., 2010, 4(3): 234-238.
[14] Ping HU, Wei YAN, Wei WANG, Yi-yin SHAN, Ke YANG, Wei SHA, Zhan-li GUO, . Study on Laves phase in an advanced heat-resistant steel[J]. Front. Mater. Sci., 2009, 3(4): 434-441.
[15] Ning CAO, Zhen-yi FEI, Yong-xin QI, Wen-wen CHEN, Lu-lu SU, Qi WANG, Mu-sen LI, . Characterization and tribological application of diamond-like carbon (DLC) films prepared by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique[J]. Front. Mater. Sci., 2009, 3(4): 409-414.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed