Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2013, Vol. 7 Issue (1) : 1-27    https://doi.org/10.1007/s11706-013-0189-5
REVIEW ARTICLE
Microstructural stability of 9--12%Cr ferrite/martensite heat-resistant steels
Wei YAN, Wei WANG, Yi-Yin SHAN, Ke YANG()
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
 Download: PDF(1982 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The microstructural evolutions of advanced 9--12%Cr ferrite/martensite heat-resistant steels used for power generation plants are reviewed in this article. Despite of the small differences in chemical compositions, the steels share the same microstructure of the as-tempered martensite. It is the thermal stability of the initial microstructure that matters the creep behavior of these heat-resistant steels. The microstructural evolutions involved? in? 9--12%Cr ?ferrite ?heat-resistant ?steels ?are ?elabo- rated, including (1) martensitic lath widening, (2) disappearance of prior austenite grain boundary, (3) emergence of subgrains, (4) coarsening of precipitates, and (5) formation of new precipitates, such as Laves-phase and Z-phase. The former three microstructural evolutions could be retarded by properly disposing the latter two. Namely improving the stability of precipitates and optimizing their size distribution can effectively exert the beneficial influence of precipitates on microstructures. In this sense, the microstructural stability of the tempered martensite is in fact the stability of precipitates during the creep. Many attempts have been carried out to improve the microstructural stability of 9--12%Cr steels and several promising heat-resistant steels have been developed.

Keywords heat-resistant steel      microstructure      martensite      precipitate      microstructural evolution     
Corresponding Author(s): YANG Ke,Email:kyang@imr.ac.cn   
Issue Date: 05 March 2013
 Cite this article:   
Yi-Yin SHAN,Ke YANG,Wei YAN, et al. Microstructural stability of 9--12%Cr ferrite/martensite heat-resistant steels[J]. Front Mater Sci, 2013, 7(1): 1-27.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-013-0189-5
https://academic.hep.com.cn/foms/EN/Y2013/V7/I1/1
ElementMass fraction /%
Steam pipes steelCladding structural steel
12CrMoVP91E911P929Cr3W3CoBEuro97CLAM9Cr2WVTaF82H
C0.20.10.10.10.10.10.10.10.1
Si-----0.050.010.20.1
Cr12.09.09.09.09.09.09.09.08.0
Mo1.01.01.00.5-----
W--1.01.83.01.01.52.02.0
Co----3.0----
Ni0.50.10.30.05-----
V0.30.20.20.20.20.20.20.20.2
Nb-0.050.050.060.05----
Ta-----0.080.100.070.04
N-0.060.070.06-0.020.020.02-
B---0.0010.014----
Tab.1  Chemical compositions of typical 9-12%Cr steels
Fig.1  Schematic microstructure of the as-tempered martensite steel. (Reproduced with permission from Ref. [], Copyright 2006 Elsevier)
Fig.2  Creep rupture strength of ferritic heat-resistant steels. (Reproduced with permissions from Refs. [-], Copyright 1997 and 2010 Elsevier)
Fig.3  Schematic illustration of creep strength mechanism map. (Reproduced with permissions from Refs. [-], Copyright 1997 and 2010 Elsevier)
Fig.4  TEM images of the 10%Cr steel under different creep conditions (600°C): 436 h at 320 MPa; 723 h at 300 MPa; 1599 h at 280 MPa; 3230 h at 250 MPa; 8354 h at 210 MPa; as-tempered. (Reproduced with permission from Ref. [], Copyright 2011 JMST)
Fig.5  Migration process of lath boundary during tempering at 667°C: 131 min; 133 min; 136 min; 147 min; 210 min. (Reproduced with permission from Ref. [], Copyright 2003 Maney Publishing)
Fig.6  TEM images showing the disappeared prior grain boundaries in a 10%Cr steel crept at 210 MPa and 600°C for 8354 h.
Fig.7  Micrographs illustrating subgrain evolution in CLAM steel: as tempered martensite; creep at 600°C for 98 h; aging at 600°C for 5000 h; aging at 650°C for 3000 h.
Fig.8  Micrograph showing the formation of subgrains in the interrupted creep sample of CLAM steel at 600°C under load of 100 MPa.
Fig.9  TEM observations of the dislocation features for a T91 specimen: undeformed; = 0.01; = 0.06 ( = 620 K). (Reproduced with permission from Ref. [], Copyright 2010 Elsevier)
Fig.10  Schematically illustrating the evolution of martensite into subgrains.
Fig.11  TEM images showing the pinning effect of MC on subgrain boundaries in CLAM steel: crept sample at 600°C for 632 h under 150 MPa; aging sample at 650°C for 5000 h.
Fig.12  Microstructures of P91 steel as received and after creep at 600°C for 113,431 h (gauge). Typical EDS (field-emission-gun scanning electron microscope (FEG-SEM)) spectra for MC carbides, Laves-phases and matrix, respectively. (Reproduced with permission from Ref. [], Copyright 2010 Elsevier)
Fig.13  MX carbonitrides in a 9%Cr steel showing the stability of MX carbonitrides: as-tempered; aging at 650°C for 4000 h.
Fig.14  Rectangular Laves-phase particles distributed along the lath boundary in a 10%Cr steel crept at 600°C: 250 MPa for 3230 h; 300 MPa for 723 h.
Fig.15  TEM graphs illustrating the growth of Laves-phase in the steel crept with load of 80 MPa at 600°C for 200 h: 10Cr-6W; 10Cr-6W-3Co. (Reproduced with permission from Ref. [], Copyright 2001 ISIJ)
Fig.16  Schematic diagram showing the nucleation and growth process of Laves-phase. (Reproduced with permission from Ref. [], Copyright 2006 Springer)
Fig.17  Series micrographs of FeW precipitation in δ-ferrite of 9Cr-4W steel. (Reproduced with permission from Ref. [], Copyright 1991 Springer)
Fig.18  Laves-phase particles in a 10%Cr steel exposed at 600°C for 8354 h in the undeformed thread and the gauge length.
Fig.19  SEM images of creep damage in the P91 steel after creep at 600°C for 113 and 431 h 7 mm from the fracture surface: BSE-mode; SE-mode. (Reproduced with permission from Ref. [], Copyright 2010 Elsevier)
StateImpact toughness /J
Initial155
Aging at 600°C for 3500 h20
Aging at 600°C for 3500 h+ tempering at 760°C for 2 h153
Tab.2  The change of room temperature impact toughness in P92 steel after tempering at 760°C for 2 h
Fig.20  BSE images of the P92 steels before and after aging at 760°C for 2 h.
Fig.21  Two possible models of the Z-phase nucleation.
Fig.22  12%CrNbN experimental steel after 650°C/1000 h. (Reproduced from Ref. [])
Fig.23  TEM images of a FeTa Laves-phase strengthened steel, Ta7Cr (1%Ta, 7%Cr, in wt.%): as heat-treated initial microstructure; Laves-phase pinning subgrains during creep. (Reproduced with permission from Ref. [], Copyright 1976 Springer)
1 Cerjak H, Hofer P, Schaffernak B. The influence of microstructural aspects on the service behaviour of advanced power plant steels. ISIJ International , 1999, 39(9): 874–888
2 Masuyama F. History of power plants and progress in heat resistant steels. ISIJ International , 2001, 41(6): 612–625
3 Maruyama K, Sawada K, Koike J. Strengthening mechanisms of creep resistant tempered martensitic steel. ISIJ International , 2001, 41(6): 641–653
4 Agamennone R, Blum W, Gupta C, . Evolution of microstructure and deformation resistance in creep of tempered martensitic 9–12%Cr–2%W–5%Co steels. Acta Materialia , 2006, 54(11): 3003–3014
5 Klueh R L, Nelson A T. Ferritic/martensitic steels for next-generation reactors. Journal of Nuclear Materials , 2007, 371(1–3): 37–52
6 Klueh R L, Alexander D J, Sokolov M A. Effect of chromium, tungsten, tantalum and boron on mechanical properties of 5–9Cr–WVTaB steels. Journal of Nuclear Materials , 2002, 304(2–3): 139–152
7 Abe F, Araki H, Noda T. The effect of tungsten on dislocation recovery and precipitation behavior of low-activation martensitic 9Cr steels. Metallurgical Transactions A , 1991, 22(10): 2225–2235
8 Klueh R L, Alexander D J, Kenik E A. Development of low-chromium, chromium-tungsten steels for fusion. Journal of Nuclear Materials , 1995, 227(1–2): 11–23
9 van der Schaaf B, Gelles D S, Jitsukawa S, . Progress and critical issues of reduced activation ferritic/martensitic steel development. Journal of Nuclear Materials , 2000, 283–287: 52–59
10 Jitsukawa S, Tamura M, van der Schaaf B, . Development of an extensive database of mechanical and physical porperties for reduced-activation martensitic steel F82H. Journal of Nuclear Materials , 2002, 307–311: 179–186
11 Huang Q Y, Li J G, Chen Y X. Study of irradiation effects in China low activation martensitic steel CLAM. Journal of Nuclear Materials , 2004, 329–333: 268–272
12 Abe F, Nakazawa S. Microstructural evolution and creep behaviour of bainitic, martensitic and martensite-ferrite dual phase Cr–2W steels. Materials Science and Technology , 1992, 8(12): 1063–1069
13 Liu X Y, Fujita T. Effect of chromium content on creep rupture properties of a high chromium ferritic heat resisting steel. ISIJ International , 1989, 29(8): 680–686
14 Gustafson A, Agren J. Possible effect of Co on coarsening of M23C6 carbide and Orowan stress in a 9% Cr Steel. ISIJ International , 2001, 41(4): 356–360
15 Abe F. Behavior of boron in 9Cr heat resistant steel during heat treatment and creep deformation. Key Engineering Materials , 2007, 345–346: 569–572
16 Abe F, Semba H, Sakuraya T. Effect of boron on microstructure and creep deformation behavior of tempered martensitic 9Cr steel. Materials Science Forum , 2007, 539–543: 2982–2987
17 Hattestrand M, Andren H O. Boron distribution in 9–12% chromium steels. Materials Science and Engineering A , 1999, 270(1): 33–37
18 Ennis P J, Quadakkers J W. The steam oxidation resistance of 9–12% Cr steels. In: Lecomte-Beckers J, Carton M, Schubert F, ., eds. Materials for Advanced Power Engineering 2002: Proceedings of the 7th Liege Conference , 2002, 1131–1142
19 Ishitsuka T, Inoue Y, Ogawa H.Effect of silicon on the steam oxidation resistance of a 9% Cr heat resistant steel. Oxidation of Metals , 2004, 61(1): 125–142
20 Aghajani A, Somsen C, Eggeler G. On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel. Acta Materialia , 2009, 57(17): 5093–5106
21 Aghajani A, Richter F, Somsen C, . On the formation and growth of Mo-rich Laves-phase particles during long-term creep of a 12% chromium tempered martensite ferritic steel. Scripta Materialia , 2009, 61(11): 1068–1071
22 Hosoi Y, Wade N, Kunimitsu S, . Precipitation behavior of Laves-phase and its effect on toughness of 9Cr–2Mo ferritic-martensitic steel. Journal of Nuclear Materials , 1986, 141–143: 461–467
23 Abe F, Taneike M, Sawada K. Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides. International Journal of Pressure Vessels and Piping , 2007, 84(1–2): 3–12
24 Yoshizawa M, Igarashi M. Long-term creep deformation characteristics of advanced ferritic steels for USC power plants. International Journal of Pressure Vessels and Piping , 2007, 84(1–2): 37–43
25 Kostka A, Tak K G, Hellmig R J, . On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels. Acta Materialia , 2007, 55(2): 539–550
26 Ghassemi Armaki H, Chen R P, Maruyama K, . Creep behavior and degradation of subgrain structures pinned by nanoscale precipitates in strength-enhanced 5 to 12% Cr ferritic steels. Metallurgical and Materials Transactions A , 2011, 42(10): 3084–3094
27 Blum W. In: Mughrabi H, ed. Plastic Deformation and Fracture of Materials . In: Cahn R W, Haasen P, Kramer E J, eds. Materials Science and Technology (Volumn. 6). Weinheim: VCH , 1993, 359–405
28 Eggeler G, Blum W. Coarsening of the dislocation-structure after stress reduction during creep of NaCl single-crystals. Philosophical Magazine , 1981, 44(5): 1065–1084
29 Sawada K, Taneike M, Kimura K, . In situ observation of recovery of lath structure in 9% chromium creep resistant steel. Materials Science and Technology , 2003, 19(6): 739–742
30 Kimura K, Kushima H, Abe F, . Inherent creep strength and long term creep strength properties of ferritic steels. Materials Science and Engineering A , 1997, 234–236: 1079–1082
31 Kimura K, Toda Y, Kushima H, . Creep strength of high chromium steel with ferrite matrix. International Journal of Pressure Vessels and Piping , 2010, 87(6): 282–288
32 Panait C G, Bendick W, Fuchsmann A, . Study of the microstructure of the Grade 91 steel after more than 100,000 h of creep exposure at 600°C. International Journal of Pressure Vessels and Piping , 2010, 87(6): 326–335
33 Abe F. Bainitic and martensitic creep-resistant steels. Current Opinion in Solid State and Materials Science , 2004, 8(3–4): 305–311
34 Hu P, Yan W, Sha W, . Microstructure evolution of a 10Cr heat-resistant steel during high temperature creep. Journal of Materials Science & Technology , 2011, 27(4): 344–351
35 Sawada K, Maruyama K, Hasegawa Y, . Creep life assessment of high chromium ferritic steels by recovery of martensitic lath structure. Key Engineering Materials , 2000, 171–174: 109–114
36 Abe F, Nakazawa S, Araki H, . The role of microstructural instability on creep-behavior of a martensitic 9Cr–2W steel. Metallurgical Transactions A , 1992, 23(2): 469–477
37 Dimmler G, Weinert P, Kozeschnik E, . Quantification of the Laves-phase in advanced 9–12% Cr steels using a standard SEM. Materials Characterization , 2003, 51(5): 341–352
38 Eggeler G, Nilsvang N, Ilschner B. Microstructural changes in a 12%Cr steel during creep. Steel Research , 1987, 58(2): 97–103
39 Eggeler G, Earthman J C, Nilsvang N, . Microstructural study of creep rupture in a 12% chromium ferritic steel. Acta Metallurgica , 1989, 37(1): 49–60
40 Dronhofer A, Pesicka J, Dlouhy A, . On the nature of internal interfaces in tempered martensite ferritic steels. Zeitschrift fur Metallkunde , 2003, 94(5): 511–520
41 Tak K-G, Schulz U, Eggeler G. On the effect of micrograin crystallography on creep of FeCr alloys. Materials Science and Engineering A , 2009, 510–511: 121–129
42 Pesicka J, Kuzel R, Dronhofer A, . The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels. Acta Materialia , 2003, 51(16): 4847–4862
43 Pesicka J, Dronhofer A, Eggeler G. Free dislocations and boundary dislocations in tempered martensite ferritic steels. Materials Science and Engineering A , 2004, 387–389: 176–180
45 Keller C, Margulies M M, Hadjem-Hamouche Z, . Influence of the temperature on the tesile behaviour of a modified 9Cr–1Mo T91 martensitic steel. Materials Science and Engineering A , 2010, 527(24–25): 6758–6764
46 Qin Y, G?tz G, Blum W. Subgrain structure during annealing and creep of the cast martensitic Cr-steel G-X12CrMoWVNbN 10-1-1. Materials Science and Engineering A , 2003, 341(1–2): 211–215
47 Blum W, G?tz G. Evolution of dislocation structure in martensitic steels: the subgrain size as a sensor for creep strain and residual creep life. Steel Research , 1999, 70(7): 274–278
48 Hald J, Korcakova L. Precipitate stability in creep resistant ferritic steels — Experimental investigations and modelling. ISIJ International , 2003, 43(3): 420–427
49 Polcik P, Sailer T, Blum W, . On the microstructural development of the tempered martensitic Cr-steel P 91 during long-term creep — a comparison of data. Materials Science and Engineering A , 1999, 260(1–2): 252–259
50 Panait C G, Zielińska-Lipiec A, Koziel T, . Evolution of dislocation density, size of subgrains and MX-type precipitatesin a P91 steel during creep and during thermal ageing at 600°C for more than 100,000 h. Materials Science and Engineering A , 2010, 527(16–17): 4062–4069
51 Eggeler G. The effect of long-term creep on particle coarsening in tempered martensite ferritic steels. Acta Metallurgica , 1989, 37(12): 3225–3234
52 Sawada K, Taneike M, Kimura K, . Effect of nitrogen content on microstructural aspects and creep behavior in extremely low carbon 9Cr heat-resistant steel. ISIJ International , 2004, 44(7): 1243–1249
53 Ghassemi-Armaki H, Chen R P, Maruyama K, . Static recovery of tempered lath martensite microstructures during long-term aging in 9–12% Cr heat resistant steels. Materials Letters , 2009, 63(28): 2423–2425
54 Abe F. Effect of quenching, tempering, and cold rolling on creep deformation behavior of a tempered martensitic 9Cr–1W steel. Metallurgical Transactions A , 2003, 34(4): 913–925
55 Abe F, Nakazawa S. The effect of tungsten on creep — behavior of tempered martensitic 9Cr steels. Metallurgical Transactions A , 1992, 23(11): 3025–3034
56 Aghajani A, Somsen Ch, Pesicka J, . Microstructural evolution in T24, a modified 2(1/4)Cr–1Mo steel during creep after different heat treatments. Materials Science and Engineering A , 2009, 510–511: 130–135
57 Bendick W, Gabrel J, Hahn B, . New low alloy heat resistant ferritic steels T/P23 and T/P24 for power plant application. International Journal of Pressure Vessels and Piping , 2007, 84(1–2): 13–20
58 Bhandarkar M D, Bhat M S, Parker E R, . Creep and fracture of a Laves-phase strengthened ferritic alloy. Metallurgical Transactions A , 1976, 7(5): 753–760
59 Cui J, Kim I-S, Kang C-Y, . Creep stress effect on the precipitation behavior of Laves-phase in Fe–10%Cr–6%W alloys. ISIJ International , 2001, 41(4): 368–371
60 Sawada K, Takeda M, Maruyama K, . Effect of W on recovery of lath structure during creep of high chromium martensitic steels. Materials Science and Engineering A , 1999, 267(1): 19–25
61 Kne?evi? V, Balun J, Sauthoff G, . Design of martensitic/ferritic heat-resistant steels for application at 650°C with supporting thermodynamic modelling. Materials Science and Engineering A , 2008, 477(1–2): 334–343
62 Li Q. Precipitation of Fe2W Laves-phase and modeling of its direct influence on the strength of a 12Cr–2W steel. Metallurgical and Materials Transactions A , 2006, 37(1): 89–97
63 Porter D A, Easterling K E. Phase Transformation in Metals and Alloys . New York: Van Nostrand Reinhold, 1981: 326–332
64 Hofer P, Cerjak H, Warbichler P. Quantitative evaluation of precipitates in the martensitic cast steel G-X12CrMoWVNbN10-1-1. In: Lecomte-Beckers J, Schubert F, Ennis P J, eds. 6th Liège- Conference Materials for Advanced Power Engineering , 1998, Part I, 549–557
65 Foldyna V, Kubon Z, Filip M, . Evaluation of structural stability and creep resistance of 9–12% Cr steel. Steel Research , 1996, 67(9): 375–381
66 Kubon Z, Foldyna V. The effect of Nb, V, N and Al on creep rupture strength of 9–12% Cr steel. Steel Research , 1995, 66(9): 389–393
67 Hattestrand M, Andren H O. Microstructural development during ageing of an 11% chromium steel alloyed with copper. Materials Science and Engineering A , 2001, 318(1–2): 94–101
68 Hu P, Yan W, Sha W, . Study on Laves-phase in an advanced heat-resistant steel. Frontiers of Materials Science in China , 2009, 3(4): 434–441
69 Janovec J, Richarz B, Grabke H J. Some aspects of intermetallic phase precipitation in a 12% Cr-steel. Scripta Metallurgica et Materialia , 1995, 33(2): 295–300
71 Hattestrand M, Schwind M, Andren H O. Microanalysis of two creep resistant 9–12% chromium steels. Materials Science and Engineering A , 1998, 250(1): 27–36
72 Lundin L M. Direct measurement of carbon solubility in the intermetallic (Fe, Cr)2(Mo, W) Laves-phase using atom-probe field-ion microscopy. Scripta Materialia , 1996, 34(5): 741–747
73 Hosoi Y, Wade N, Kunimitsu S, . Precipitation behavior of Laves-phase and its effect on toughness of 9Cr–2Mo ferritic martensitic steel. Journal of Nuclear Materials , 1986, 141–143: 461–467
74 Lee J S, Armaki H G, Maruyama K, . Causes of breakdown of creep strength in 9Cr–1.8W–0.5Mo–V–NbSteel. Materials Science and Engineering A , 2006, 428(1–2): 270–275
75 Kunimitsu S, You Y, Kasuya N, . Effect of thermo-mechanical treatment on toughness of 9Cr–W ferritic-martensitic steels during aging. Journal of Nuclear Materials , 1991, 179–181: 689–692
76 Schafer L. Tensile and impact behavior of the reduced-activation steels OPTIFER and F82H mod. Journal of Nuclear Materials , 2000, 283–287: 707–710
77 Tamura M, Hayakawa H, Yoshitake A, . Phase stability of reduced activation ferritic steel: 8%Cr–2%W–0.2%V–0.04%Ta–Fe. Journal of Nuclear Materials , 1988, 155–157: 620–625
78 Ishii T, Fukaya K, Nishiyama Y, . Low cycle fatigue properties of 8Cr–2WVTa ferritic steel at elevated temperatures. Journal of Nuclear Materials , 1998, 258(263): 1183–1186
79 Fernandez P, Hernandez-Mayoral M, Lapena J, . Correlation between microstructure and mechanical properties of reduced activation modified F-82H ferritic martensitic steel Materials. Materials Science and Technology , 2002, 18(11): 1353–1362
80 Miyata K, Sawaragi Y, Okada H, . Microstructural evolution of a 12Cr–2W–Cu–V–Nb steel during three-year service exposure. ISIJ International , 2000, 40(11): 1156–1163
81 Tsuchida Y, Okamoto K, Tokunaga Y. Improvement of creep rupture strength of high Cr ferritic steel by addition of W. ISIJ International , 1995, 35(3): 317–323
82 Sato M, Hasegawa Y, Muraki T, . Correlation between creep strength and stability of subgrain structure in high chromium ferritic heat resistant steel with tungsten. Journal of the Japan Institute of Metals , 2000, 64: 371–374
83 Muneki S, Igarashi M, Abe F. Creep characteristics of precipitation hardened carbon free martensitic alloys. Key Engineering Materials , 2000, 171–174: 491–498
84 Abe F. Creep rates and strengthening mechanisms in tungsten-trengthened 9Cr steels. Materials Science and Engineering A , 2001, 319–321: 770–773
85 Danielsen H K, Hald J. Behaviour of Z phase in 9–12%Cr steels. Energy Materials , 2006, 1(1): 49–57
86 Jack D H, Jack K H. Structure of Z-phase NbCrN. Journal of the Iron and Steel Institute , 1972, 210: 790–792
87 Andren H O, Henjered A, Karlsson L. In: Stainless Steel 84. London: The Institute of Metals , 1985, 91–96
88 Hald J, Danielsen H K. Z-phase strengthened martensitic 9–12%Cr steels. In: Proceedings of 3rd Symposium on Heat Resistant Steels and Alloys for High Efficiency USC Power Plants, National Institute for Materials Science , Tsukuba, Japan, 2009
89 Danielsen H K, Hald J.A thermodynamic model of the Z-phase Cr(V, Nb)N. Calphad , 2007, 31(4): 505–514
90 Danielsen H K, Hald J, Somers M A J. Atomic resolution imaging of precipitate transformation from cubic TaN to tetragonal CrTaN. Scripta Materialia , 2012, 66(5): 261–264
91 Danielsen H K, Hald J. On the nucleation and dissolution process of Z-phase Cr(V, Nb)N in martensitic 12%Cr steels. Materials Science and Engineering A , 2009, 505(1–2): 169–177
92 Sawada K, Kushima H, Kimura K, . TTP diagrams of Z phase in 9–12% Cr heat-resistant steels. ISIJ International , 2007, 47(5): 733–739
93 Cipolla L, Danielsen H K, Venditti D, . Conversion of MX nitrides to Z-phase in a martensitic 12% Cr steel. Acta Materialia , 2010, 58(2): 669–679
94 Hald J. Microstructure and long-term creep properties of 9–12% Cr steels. International Journal of Pressure Vessels and Piping , 2008, 85(1–2): 30–37
95 Danielsen H K, Hald J. Tantalum-containing Z-phase in 12%Cr martensitic steels. Scripta Materialia , 2009, 60(9): 811–813
96 Golpayegani A, Andrén H O, Danielsen H, . A study on Z-phase nucleation in martensitic chromium steels. Materials Science and Engineering A , 2008, 489(1–2): 310–318
97 Yin F-S, Jung W-S, Chung S-H. Microstructure and creep rupture characteristics of an ultra-low carbon ferritic/martensitic heat-resistant steel. Scripta Materialia , 2007, 57(6): 469–472
98 Strang A, Vodarek V. Z phase formation in martensitic 12CrMoVNb steel. Materials Science and Technology , 1996, 12(7): 552–556
99 de Castro V, Leguey T, Munoz A, . Mechanical and microstructural behaviour of Y2O3 ODS EUROFER 97. Journal of Nuclear Materials , 2007, 367–37(Part A): 196–201
100 Olier P, Bougault A, Alamo A, . Effects of the forming processes and Y2O3 content on ODS-Eurofer mechanical properties. Journal of Nuclear Materials , 2009, 386–388: 561–563
101 Klimenkov M, Lindau R, Moslang A. New insights into the structure of ODS particles in the ODS-Eurofer alloy. Journal of Nuclear Materials , 2009, 386–388: 553–556
102 Schaeublin R, Leguey T, Spatig P, . Microstructure and mechanical properties of two ODS ferritic/martensitic steels. Journal of Nuclear Materials , 2002, 307–311: 778–782
103 Yu G, Nita N, Baluc N. Thermal creep behaviour of the EUROFER 97 RAFM steel and two European ODS EUROFER 97 steels. Fusion Engineering and Design , 2005, 75–79: 1037–1041
104 Liu F, Fors D H R, Golpayegani A, . Effect of boron on carbide coarsening at 873 K (600°C) in 9–12% chromium steels. Metallurgical and Materials Transactions A , 2012, 43(11): 4053–4062
105 Taneike M, Abe F, Sawada K. Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions. Nature , 2003, 424(6946): 294–296
106 Hald J, Straub S. In: Lecomte-Beckers J, ., eds. Materials for Advanced Power Engineering . Julich: Forschungszentrum Julich GmbH, 1998, 155
107 Taneike M, Sawada K, Abe F. Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment. Metallurgical and Materials Transactions A , 2004, 35(4): 1255–1262
108 Grobner P J, Bi?s V, Sponseller D L. Delta ferritic heat-resistant chromium-molybdenum steels with improved rupture strength. Metallurgical and Materials Transactions A , 1980, 11(7): 909–917
109 Toda Y, Iijima M, Kushima H, . Effects of Ni and heat treament on long-term creep strength of precipitation strengthened 15Cr ferritic heat resistant steels. ISIJ International , 2005, 45(11): 1747–1753
[1] Chengzhi LUO, Guanghui LIU, Min ZHANG. Electric-field-induced microstructure modulation of carbon nanotubes for high-performance supercapacitors[J]. Front. Mater. Sci., 2019, 13(3): 270-276.
[2] Abdollah SABOORI, Matteo PAVESE, Claudio BADINI, Paolo FINO. Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization[J]. Front. Mater. Sci., 2017, 11(2): 171-181.
[3] Qianli HUANG,Ningmin HU,Xing YANG,Ranran ZHANG,Qingling FENG. Microstructure and inclusion of Ti–6Al–4V fabricated by selective laser melting[J]. Front. Mater. Sci., 2016, 10(4): 428-431.
[4] Rui GAO,Wen-jun GE,Shu MIAO,Tao ZHANG,Xian-ping WANG,Qian-feng FANG. Hot rolling and annealing effects on the microstructure and mechanical properties of ODS austenitic steel fabricated by electron beam selective melting[J]. Front. Mater. Sci., 2016, 10(1): 73-79.
[5] Qianli HUANG,Xujie LIU,Xing YANG,Ranran ZHANG,Zhijian SHEN,Qingling FENG. Specific heat treatment of selective laser melted Ti–6Al–4V for biomedical applications[J]. Front. Mater. Sci., 2015, 9(4): 373-381.
[6] Yongze CAO,Qiang WANG,Guojian LI,Yonghui MA,Jiaojiao DU,Jicheng HE. Effects of different magnetic flux densities on microstructure and magnetic properties of molecular-beam-vapor-deposited nanocrystalline Fe64Ni36 thin films[J]. Front. Mater. Sci., 2015, 9(2): 163-169.
[7] Masaaki TAKEZAWA,Hiroyuki TANEDA,Yuji MORIMOTO. Relationship between microstructure and magnetic domain structure of Nd--Fe--B melt-spun ribbon magnets[J]. Front. Mater. Sci., 2015, 9(2): 206-210.
[8] Peng-Cheng XIA,Feng-Wen CHEN,Kun XIE,Ling QIAO,Jin-Jiang YU. Influence of microstructures on thermal fatigue property of a nickel-base superalloy[J]. Front. Mater. Sci., 2015, 9(1): 85-92.
[9] Ya-Ming WANG,Jun-Wei GUO,Yun-Feng WU,Yan LIU,Jian-Yun CAO,Yu ZHOU,De-Chang JIA. Biocorrosion resistance of coated magnesium alloy by microarc oxidation in electrolyte containing zirconium and calcium salts[J]. Front. Mater. Sci., 2014, 8(3): 295-306.
[10] Zhen-Tao YU,Ming-Hua ZHANG,Yu-Xing TIAN,Jun CHENG,Xi-Qun MA,Han-Yuan LIU,Chang WANG. Designation and development of biomedical Ti alloys with finer biomechanical compatibility in long-term surgical implants[J]. Front. Mater. Sci., 2014, 8(3): 219-229.
[11] Zhi-Wen CHEN, Chan-Hung SHEK, C. M. Lawrence WU, Joseph K. L. LAI. Recent research situation in tin dioxide nanomaterials: synthesis, microstructures, and properties[J]. Front Mater Sci, 2013, 7(3): 203-226.
[12] Hai-Jun LEI, Bin LIU, Dai-Ning FANG, . The coefficient of thermal expansion of biomimetic composites[J]. Front. Mater. Sci., 2010, 4(3): 234-238.
[13] Jian-Qiang ZHANG, Bing-Yin YAO, Tai-Jiang LI, Fu-Guang LIU, Ying-Lin ZHANG, . Numerical simulation of mechanical controlling parameters for Type IV cracking on the welding joints of martensitic heat-resistant steel[J]. Front. Mater. Sci., 2010, 4(2): 210-216.
[14] Ping HU, Wei YAN, Wei WANG, Yi-yin SHAN, Ke YANG, Wei SHA, Zhan-li GUO, . Study on Laves phase in an advanced heat-resistant steel[J]. Front. Mater. Sci., 2009, 3(4): 434-441.
[15] Ning CAO, Zhen-yi FEI, Yong-xin QI, Wen-wen CHEN, Lu-lu SU, Qi WANG, Mu-sen LI, . Characterization and tribological application of diamond-like carbon (DLC) films prepared by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique[J]. Front. Mater. Sci., 2009, 3(4): 409-414.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed