Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2010, Vol. 4 Issue (2) : 210-216    https://doi.org/10.1007/s11706-010-0022-3
Research articles
Numerical simulation of mechanical controlling parameters for Type IV cracking on the welding joints of martensitic heat-resistant steel
Jian-Qiang ZHANG1,Bing-Yin YAO2,Tai-Jiang LI2,Fu-Guang LIU2,Ying-Lin ZHANG3,
1.State Key Lab of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001, China;School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China; 2.Xi’an Thermal Power Research Institute Co., Ltd, Xi’an 710032, China; 3.School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China;
 Download: PDF(415 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The maximum principal stress, von Mises equivalent stress and equivalent creep strain in the welding joint of martensitic heat-resistant steel (9Cr1MoVNb) are simulated by finite-element method (FEM) under the condition of 600°C and applied stress of 80 MPa. The results show that the maximum principal stress and von Mises equivalent stress are high on the curved points of two sides of the groove face near the fine-grain heat-affected zone (HAZ). The creep strain mainly concentrates in the fine-grain HAZ; the maximum creep strain locates in the bottom of fine-grain HAZ of specimen. The stress triaxiality in the fine-grain HAZ is maximum, and creep cracking occurs because of the intensive constrain of base metal and weld. The simulation result is good in agreement with those of crack initiation site and propagation path by using the stress triaxiality as the mechanical controlling parameter of weld joint of martensite heat-resistant steel. Therefore, it is reasonable that the stress triaxiality is used for analysis initiation and propagation of Type IV cracking in the fine-grain HAZ.
Keywords martensitic heat-resistant steel      Type IV cracking      von Mises equivalent stress      equivalent creep strain      numerical simulation      
Issue Date: 05 June 2010
 Cite this article:   
Bing-Yin YAO,Jian-Qiang ZHANG,Tai-Jiang LI, et al. Numerical simulation of mechanical controlling parameters for Type IV cracking on the welding joints of martensitic heat-resistant steel[J]. Front. Mater. Sci., 2010, 4(2): 210-216.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-010-0022-3
https://academic.hep.com.cn/foms/EN/Y2010/V4/I2/210
Swindemana R W, Santellaa M L, Maziasza P J, et al. International issuesin replacing Cr-Mo steels and stainless steels with 9Cr-1Mo-V steel. Journal of Pressure Vessels and Piping, 2004, 81(6): 507―512
Yang F, Zhang Y L, Ren Y N, et al. New Heat-Resistant Steel Welding. Beijing: China Electric Power Press, 2006, 1―31
Ning B Q, Liu Y C, Yin H Q, et al. Development and investigationof ferritic heat resistant steels for boiler tube of the advancedpower plants. Materials Review, 2006, 20(12): 83―86
Brozda J, Zeman M. Weldabilityof 9Cr1MoNbV (P91) steel intended for service in the power industries. Welding Research Abroad, 1995, 42(5): 58―68
Brozda J, Zeman M. An investigationinto the properties of the heat affected zone simulated in 9Cr1MoNbV(P91) steel intended for service at elevated temperature. Welding Research Abroad, 1997, 43(6): 33―44
Zhu L H, Zhao Q X, Gu H C, et al. Investigation on the strengtheningmechanism of 10Cr9Mo1VNbN heat-resistant steel. Materials for Mechanical Engineering, 1999, 23(1): 6―26 (in Chinese)
Zhu L H, Zhao Q X, Gu H D, et al. Evaluation of creep rupturelifetime of new heat-resistant steel T91. Boiler Technology, 2002, 33(5): 24―27
Tabuchi M, Hongo H, Li Y, et al. Evaluation of microstructures and creep damagesin the HAZ of P91 steel weldment. Journalof Pressure Vessel Technology, 2009, 131(2): 021406 (6 pages)
Watanabe T, Tabuchi M, Yamazaki M, et al. Creep damage evaluationof 9Cr-1Mo-V-Nb steel welded joints showing Type IV fracture. International Journal of Pressure Vessels and Piping, 2006, 83(1): 63―71

doi: 10.1016/j.ijpvp.2005.09.004
Perrin I J, Hayhurst D R. Continuum damage mechanics analyses of Type IV creep failure in ferriticsteel crossweld specimens. InternationalJournal of Pressure Vessels and Piping, 1999, 76(9): 599―617

doi: 10.1016/S0308-0161(99)00051-4
Gooch D J, Kimmins S T. Type IV cracking in 0.5Cr0.5Mo0.25V/2.25Cr1Mo weldments. In: Wilshire B, Evans R W, eds. Proceedings of the Third International Conference on Creep and Fatigueof Engineering Materials and Structure, Swansea, 1987
Laha K, Bhanu Sankara Rao K, Mannan S L. Creep behaviour of post-weldheat-treated 2.25Cr-1Mo ferritic steel base, weld metal and weldments. Materials Science and Engineering: A, 1990, 129(2): 183―195

doi: 10.1016/0921-5093(90)90265-5
Parker J D, Parsons A W J. High temperature deformation and fracture processes in 2.25Cr1Mo-0.5Cr0.5Mo0.25Vweldments. International Journal of PressureVessels and Piping, 1995, 63(1): 45―54

doi: 10.1016/0308-0161(94)00047-M
Newman M G, Craine R E. Creep failure of weldments in thin plates. In: Cocks A C F, Ponter A R S, eds. Mechanics of Creep Brittle Materials ― 2. Amsterdam: Elsevier, 1991
Perrin I J, Hayhurst D R. Creep constitutive equations for a 0.5Cr-0.5Mo-0.25V ferritic steelin the temperature range 600°C―675°C. The Journal of Strain Analysis for Engineering Design, 1996, 31(4): 299―314

doi: 10.1243/03093247V314299
Smith D J, Walker N S, Kimmins S T. Type IV creep cavity accumulationand failure in steel welds. InternationalJournal of Pressure Vessels and Piping, 2003, 80(9): 617―627

doi: 10.1016/S0308-0161(03)00134-0
Shi C Y, Tian X T, Chen Z G, et al. On Mechanical parameter controllingcreep brittle rupture along interface of dissimilar metal welded joints. Transactions of the China Welding Institution, 1995, 16(4): 185―189
Cane B J. Mechanistic control regimes for intergranular cavitygrowth in 2.25Cr-1Mo steel under various stresses and stress states. Metal Science, 1981, 15(7): 302―310
[1] M. SCHNICK, U. FUESSEL, M. HERTEL, A. SPILLE-KOHOFF, A. B. MURPHY. Numerical investigations of arc behaviour in gas metal arc welding using ANSYS CFX[J]. Front Mater Sci, 2011, 5(2): 98-108.
[2] Shao-Qing GUO, Xiao-Hong LI. Numerical simulation of solidification and liquation behavior during welding of low-expansion superalloys[J]. Front Mater Sci, 2011, 5(2): 146-159.
[3] V. PLOSHIKHIN, A. PRIHODOVSKY, A. ILIN. Experimental investigation of the hot cracking mechanism in welds on the microscopic scale[J]. Front Mater Sci, 2011, 5(2): 135-145.
[4] Ji CHEN, Chuan-Song WU. Numerical simulation of humping phenomenon in high speed gas metal arc welding[J]. Front Mater Sci, 2011, 5(2): 90-97.
[5] Jing-Qing CHEN, Hao LU, Wei CUI. Study on Ductility Dip Cracking susceptibility in Filler Metal 82 during welding[J]. Front Mater Sci, 2011, 5(2): 203-208.
[6] Rui-Hua ZHANG, Ji-Luan PAN, Seiji KATAYAMA. The mechanism of penetration increase in A-TIG welding[J]. Front Mater Sci, 2011, 5(2): 109-118.
[7] Hui LI, Jian-song SHI, Rong-rong ZONG, Xiao-xia WANG, . Application of contact element method in the numerical simulation of thermal stress[J]. Front. Mater. Sci., 2009, 3(4): 421-425.
[8] Jun LI, Jian-guo YANG, Hai-long LI, De-jun YAN, Hong-yuan FANG. Numerical simulation on bucking distortion of aluminum alloy thin-plate weldment[J]. Front Mater Sci Chin, 2009, 3(1): 84-88.
[9] De-jun YAN, Xue-song LIU, Huan-yu XU, Jian-guo YANG, Hong-yuan FANG, Jing-yang LU. Welding distortion control of automobile engine stator by finite element method[J]. Front Mater Sci Chin, 2009, 3(1): 71-74.
[10] GUO Shaoqing, LI Xiaohong. Numerical simulation of the liquating behavior of niobium carbide in heat-affected-zone during welding of a superalloy[J]. Front. Mater. Sci., 2007, 1(2): 203-209.
[11] GUAN Jianjun, CHEN Huaining. Numerical analysis of welded joint treated by explosion shock waves[J]. Front. Mater. Sci., 2007, 1(2): 197-202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed