Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2013, Vol. 7 Issue (3) : 203-226    https://doi.org/10.1007/s11706-013-0209-5
REVIEW ARTICLE
Recent research situation in tin dioxide nanomaterials: synthesis, microstructures, and properties
Zhi-Wen CHEN1,2(), Chan-Hung SHEK2, C. M. Lawrence WU2(), Joseph K. L. LAI2
1. Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; 2. Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
 Download: PDF(1540 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This review article summarizes the new research in solid-state physical chemistry understanding of the microstructure characteristics of semiconductor tin oxide thin films made in the last years in our group. The work mainly focuses on the fabrication technology of semiconductor tin oxides thin films by using pulsed laser deposition (PLD) as well as the application of this technology on new micro- and nanostructured materials. It is an interdisciplinary work that integrates the areas of physics, chemistry and materials science.

Keywords tin dioxide      thin film      synthesis      microstructure      nanostructure      property     
Corresponding Author(s): CHEN Zhi-Wen,Email:zwchen@shu.edu.cn (Z.W.C.); WU C. M. Lawrence,Email:apcmlwu@cityu.edu.hk (C.M.L.W.)   
Issue Date: 05 September 2013
 Cite this article:   
Zhi-Wen CHEN,Chan-Hung SHEK,C. M. Lawrence WU, et al. Recent research situation in tin dioxide nanomaterials: synthesis, microstructures, and properties[J]. Front Mater Sci, 2013, 7(3): 203-226.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-013-0209-5
https://academic.hep.com.cn/foms/EN/Y2013/V7/I3/203
Fig.1  Schematic diagram of a PLD apparatus. (Reproduced with permission from Ref. [], Copyright 2005 Springer-Verlag)
Fig.2  SEM images of SnO thin films prepared by PLD with the substrate temperature at 400°C, 450°C, and 500°C. (Reproduced with permission from Ref. [], Copyright 2005 Elsevier B.V.)
Fig.3  ln()–ln plots of the SnO thin films obtained from the substrate temperature at 500°C. (Reproduced with permission from Ref. [], Copyright 2005 Elsevier B.V.)
Fig.4  The multifractal spectra () of the substrate and the three SnO thin films. (Reproduced with permission from Ref. [], Copyright 2005 Elsevier B.V.)
Substrate temperature /°Cαmaxf(αmax)αminf(αmin)ΔαΔf
Room temperature2.0432.1692.0331.5900.010-0.579
4002.0590.5302.0081.1070.0510.577
4502.0700.5002.0051.1140.0650.614
5002.0840.6662.0111.6940.0731.028
Tab.1  Parameters of the multifractal spectra of the specimens
Fig.5  The typical morphology of the bulk-quantity highly amorphous thin films grown on Si(100) substrate is shown in SEM images at lower magnifications and higher magnifications. (Reproduced with permission from Ref. [], Copyright 2005 Springer-Verlag)
Fig.6  XRD patterns of the as-deposited thin films; XRD patterns of the as-deposited thin film heating treated at 150°C for 2 h. (Reproduced with permission from Ref. [], Copyright 2005 Springer-Verlag)
Fig.7  TEM image and SAED patterns (inset) of the as-deposited thin film heating treated at 150°C for 2 h; EDS recorded on the thin film annealing at 150°C for 2 h. (Reproduced with permission from Ref. [], Copyright 2005 Springer-Verlag)
Fig.8  The larger nanoparticle with the size of about 9 nm. The inset at the upper left-hand corner shows two smaller nanoparticles with the size of about 6 nm. (Reproduced with permission from Ref. [], Copyright 2005 Springer-Verlag)
Fig.9  XRD pattern of the as-prepared porous SnO thin film; the inset shows the nanopore number distribution. (Reproduced with permission from Ref. [], Copyright 2006 Elsevier B.V.)
Fig.10  SEM and TEM images of the as-prepared porous SnO thin film. (Reproduced with permission from Ref. [], Copyright 2006 Elsevier B.V.)
Fig.11  Lower- and higher-magnifications HRTEM images of the as-prepared porous SnO thin film. (Reproduced with permission from Ref. [], Copyright 2006 Elsevier B.V.)
Fig.12  Raman spectrum and photoluminescence spectrum (inset) of the as-prepared porous SnO thin film. (Reproduced with permission from Ref. [], Copyright 2006 Elsevier B.V.)
Fig.13  TEM image of the as-prepared nanocrystalline SnO thin film; SAED pattern (inset) corresponding to the tetragonal rutile structure showing the microstructural characteristics of the polycrystalline SnO thin film. (Reproduced with permission from Ref. [], Copyright 2004 The American Physical Society)
Fig.14  XRD patterns of SnO thin films: the commercial SnO bulks; the as-prepared SnO thin film; annealing SnO thin film. (Reproduced with permission from Ref. [], Copyright 2004 The American Physical Society)
Sampledhkl /?
Ref. [27]As-prepared thin filmsCommercial bulks
1103.3473.36083.3422
1012.64272.65362.6347
2002.3692.37202.3660
1112.3094--
2102.1189--
2111.76411.76671.7603
2201.67501.68231.6738
0021.59341.59641.5901
3101.4984-1.4932
2211.4829--
1121.4392--
3011.4155--
Tab.2  The relationship of the interplanar spacing () of index () in the direct lattice for different samples
Lattice parameterValue
Ref. [27]As-prepared thin filmsCommercial bulks
a110 /?4.7334.7534.727
a200 /?4.7384.7444.732
Δa /?-0.0050.009-0.005
c101-110 /?3.1863.1983.173
c101-200 /?3.1843.2013.172
Δc /?0.002-0.0030.001
Tab.3  The relationship of the lattice parameters for different samples
Fig.15  Raman spectra of SnO bulk materials, the as-prepared SnO thin film, and annealing SnO thin film. (Reproduced with permission from Ref. [], Copyright 2004 The American Physical Society)
Fig.16  Symmetries of the optic modes of the tetragonal rutile structure for zero wave vector. (Reproduced with permission from Ref. [], Copyright 2004 The American Physical Society)
Fig.17  O-1s core-level X-ray photoelectron spectroscopy (XPS) analysis of SnO thin films: the as-prepared SnO thin film; annealing SnO thin film. (Reproduced with permission from Ref. [], Copyright 2004 The American Physical Society)
Fig.18  HRTEM image of the as-prepared SnO thin films shows its crystallinity; the inset at the bottom left-hand corner exhibits HRTEM image of a single SnO nanoparticle; the inset at the upper right-hand corner shows the agglomeration state of SnO nanoparticles in the as-prepared SnO thin film. (Reproduced with permission from Ref. [], Copyright 2004 The American Physical Society)
Fig.19  Low-magnification HRTEM image and SAED pattern of the SnO particles. (Reproduced with permission from Ref. [], Copyright 2005 Springer-Verlag)
Fig.20  HRTEM images of the as-prepared SnO thin films. (Reproduced with permission from Ref. [], Copyright 2005 Elsevier Inc.)
Fig.21  High-magnification HRTEM images of SnO nanocrystallites: SnO cluster composed of several nanocrystallites; initial stage of the grain growth process. (Reproduced with permission from Ref. [], Copyright 2005 Springer-Verlag)
Fig.22  Schematic representation of the formation processes concerning the nucleation, grain-rotation, coalescence, and growth of nanoclusters in the as-deposited thin film. (Reproduced with permission from Ref. [], Copyright 2005 Springer-Verlag)
1 Chopra K L, Major S, Pandya D K. Transparent conductors-A status review. Thin Solid Films , 1983, 102(1): 1–46
2 Kohl D.The role of noble metals in the chemistry of solid-state gas sensors. Sensors and Actuators B: Chemical , 1990, 1(1–6): 158 –165
3 Abello L, Bochu B, Gaskov A, . Structural characterization of nanocrystalline SnO2 by X-ray and Raman spectroscopy. Journal of Solid State Chemistry , 1998, 135(1): 78–85
4 Ansari S G, Boroojerdian P, Sainkar S R, . Grain size effects on H2 gas sensitivity of thick film resistor using SnO2 nanoparticles. Thin Solid Films , 1997, 295(1–2): 271–276
5 Ferrere S, Zaban A, Gregg B A. Dye sensitization of nanocrystalline tin oxide by perylene derivatives. The Journal of Physical Chemistry B , 1997, 101(23): 4490–4493
6 Varghese O K, Malhotra L K. Electrode-sample capacitance effect on ethanol sensitivity of nano-grained SnO2 thin films. Sensors and Actuators B: Chemical , 1998, 53(1–2): 19–23
7 He Y S, Campbell J C, Murphy R C, . Electrical and optical characterization of Sb:SnO2. Journal of Materials Research , 1993, 8(12): 3131–3134
8 Wang D, Wen S, Chen J, . Microstructure of SnO2. Physical Review B , 1994, 49(20): 14282–14285
9 Cirera A, Vilà A, Diéguez A, . Microwave processing for the low cost, mass production of undoped and in situ catalytic doped nanosized SnO2 gas sensor powders. Sensors and Actuators B: Chemical , 2000, 64(1–3): 65–69
10 Sekizawa K, Widjaja H, Maeda S, . Low temperature oxidation of methane over Pd catalyst supported on metal oxides. Catalysis Today , 2000, 59(1–2): 69–74
11 Dai Z R, Gole J L, Stout J D, . Tin oxide nanowires, nanoribbons, and nanotubes. The Journal of Physical Chemistry B , 2002, 106(6): 1274–1279
12 Liu Y, Zheng C, Wang W, . Synthesis and characterization of rutile SnO2 nanorods. Advanced Materials , 2001, 13(24): 1883–1887
13 Xu C K, Xu G D, Liu Y K, . Preparation and characterization of SnO2 nanorods by thermal decomposition of SnC2O4 precursor. Scripta Materialia , 2002, 46(11): 789–794
14 Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science , 2001, 291(5510): 1947–1949
15 Dai Z R, Pan Z W, Wang Z L. Ultra-long single crystalline nanoribbons of tin oxide. Solid State Communications , 2001, 118(7): 351–354
16 Hu J Q, Ma X L, Shang N G, . Large-scale rapid oxidation synthesis of SnO2 nanoribbons. The Journal of Physical Chemistry B , 2002, 106(15): 3823–3826
17 Maddalena A, Maschio R D, Dire S, . Electrical conductivity of tin oxide films prepared by the sol-gel method. Journal of Non-Crystalline Solids , 1990, 121(1–3): 365–369
18 Shek C H, Lai J K L, Lin G M. Grain growth in nanocrystalline SnO2 prepared by sol-gel route. Nanostructured Materials , 1999, 11(7): 887–893
19 Ghoshtagore R N. Mechanism of CVD thin film SnO2 formation. Journal of the Electrochemical Society , 1978, 125(1): 110–117
20 Tarey R D, Raju T A. A method for the deposition of transparent conducting thin films of tin oxide. Thin Solid Films , 1985, 128(3–4): 181–189
21 Minami T, Nanto H, Takata S. Highly conducting and transparent SnO2 thin films prepared by RF magnetron sputtering on low-temperature substrates. Japanese Journal of Applied Physics , 1988, 27(1): L287–L289
22 Zhu J J, Lu Z H, Aruna S T, . Sonochemical synthesis of SnO2 nanoparticles and their preliminary study as Li insertion electrodes. Chemistry of Materials , 2000, 12(9): 2557–2566
23 Schlosser V, Wind G. Electrical and optical properties of tin oxide layers prepared by physical vapor deposition. In: Solomon I, Equer B, Helm P, eds. Eighth E.C. Photovoltaic Solar Energy Conference: Proceedings of the International Conference, Held at Florence, Italy, May 9–13, 1988 . Dordrecht, the Netherlands: Kluwer Academic Publishers, 1988, 998
24 Zhu X, Birringer R, Herr U, . X-ray diffraction studies of the structure of nanometer-sized crystalline materials. Physical Review B , 1987, 35(17): 9085–9090
25 Schaefer H E, Würschum R, Birringer R, . Structure of nanometer-sized polycrystalline iron investigated by positron lifetime spectroscopy. Physical Review B , 1988, 38(14): 9545–9554
26 Chrisey D B, Hubler G K. Pulsed Laser Deposition of Thin Films . New York: Wiley, 1994, 327
27 Willmott P R, Huber J R. Pulsed laser vaporization and deposition. Reviews of Modern Physics , 2000, 72(1): 315–328
28 Auciello O, Engemann J, eds. Multicomponent and Multilayered Thin Films for Advanced Microtechnologies: Techniques, Fundamentals, and Devices . The Netherlands: Kluwer Academic Publishers, 1993
29 B?uerle D. Laser Processing and Chemistry . New York: Springer, 1996
30 Chen Z W, Lai J K L, Shek C H, . Nucleation and growth of SnO2 nanocrystallites prepared by pulsed laser deposition. Applied Physics A: Materials Science & Processing , 2005, 81(5): 959–962
31 von Allmen M, Blatter A. Laser-Beam Interactions with Materials . New York: Springer, 1995
32 Campbell C T, Parker S C, Starr D E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science , 2002, 298(5594): 811–814
33 Merkle K L, Thompson L J, Phillipp F. Collective effects in grain boundary migration. Physical Review Letters , 2002, 88(22): 225501 (4 pages)
34 Moldovan D, Yamakov V, Wolf D, . Scaling behavior of grain-rotation-induced grain growth. Physical Review Letters , 2002, 89(20): 206101 (4 pages)
35 Penn R L, Banfield J F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science , 1998, 281(5379): 969–971
36 Leite E R, Giraldi T R, Pontes F M, . Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature. Applied Physics Letters , 2003, 83(8): 1566–1568
37 Leite E R, Weber I T, Longo E, . A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications. Advanced Materials , 2000, 12(13): 965–968
38 Leite E R, Maciel A P, Weber I T, . Development of metal oxide nanoparticles with high stability against particle growth using a metastable solid solution. Advanced Materials , 2002, 14(12): 905–908
39 Musolino V, Dal Corso A, Selloni A. Initial stages of growth of copper on MgO(100): A first principles study. Physical Review Letters , 1999, 83(14): 2761–2764
40 Hu M, Noda S, Komiyama H. A new insight into the growth mode of metals on TiO2(110). Surface Science , 2002, 513(3): 530–538
41 Bajt S, Stearns D G, Kearney P A. Investigation of the amorphous-to-crystalline transition in Mo/Si multilayers. Journal of Applied Physics , 2001, 90(2): 1017–1025
42 Soler J M, Beltran M R, Michaelian K, . Metallic bonding and cluster structure. Physical Review B , 2000, 61(8): 5771–5780
43 Hu M, Noda S, Tsuji Y, . Effect of interfacial interactions on the initial growth of Cu on clean SiO2 and 3-mercaptopropyltrimethoxysilane-modified SiO2 substrates. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films , 2002, 20(3): 589–596
44 Zuo J M, Li B Q. Nanostructure evolution during cluster growth: Ag on H-terminated Si(111) surfaces. Physical Review Letters , 2002, 88(25): 255502 (4 pages)
45 Williams G, Coles G S V. Gas sensing properties of nanocrystalline metal oxide powders produced by a laser evaporation technique. Journal of Materials Chemistry , 1998, 8(7): 1657–1664
46 Bruno L, Pijolat C, Lalauze R. Tin dioxide thin-film gas sensor prepared by chemical vapour deposition: Influence of grain size and thickness on the electrical properties. Sensors and Actuators B: Chemical , 1994, 18(1–3): 195–199
47 Serventi A M, Dolbec R, El Khakani M A, . High-resolution transmission electron microscopy investigation of the nanostructure of undoped and Pt-doped nanocrystalline pulsed laser deposited SnO2 thin films. Journal of Physics and Chemistry of Solids , 2003, 64(11): 2097–2103
48 Chen Z W, Lai J K L, Shek C H, . Synthesis and structural characterization of rutile SnO2 nanocrystals. Journal of Materials Research , 2003, 18(6): 1289–1292
49 Chen Z W, Lai J K L, Shek C H, . Multifractal spectra of scanning electron microscope images of SnO2 thin films prepared by pulsed laser deposition. Physics Letters A , 2005, 345(1–3): 218–223
50 Chen Z W, Lai J K L, Shek C H. Insights into microstructural evolution from nanocrystalline SnO2 thin films prepared by pulsed laser deposition. Physical Review B , 2004, 70(16): 165314 (7 pages)
51 Chen Z W, Lai J K L, Shek C H. High-resolution transmission electron microscopy investigation of nanostructures in SnO2 thin films prepared by pulsed laser deposition. Journal of Solid State Chemistry , 2005, 178(3): 892–896
52 Chen Z W, Lai J K L, Shek C H. Mystery of porous SnO2 thin film formation by pulsed delivery. Chemical Physics Letters , 2006, 422(1–3): 1–5
53 Serventi A M, El Khakani M A, Saint-Jacques R G, . Highly textured nanostructure of pulsed laser deposited IrO2 thin films as investigated by transmission electron microscopy. Journal of Materials Research , 2001, 16(08): 2336–2342
54 Butty J, Peyghambarian N, Kao Y H, . Room temperature optical gain in sol-gel derived CdS quantum dots. Applied Physics Letters , 1996, 69(21): 3224–3226
55 Chen Z W, Wang X P, Tan S, . Multifractal behavior of crystallization on Au/Ge bilayer films. Physical Review B , 2001, 63(16): 165413 (5 pages)
56 Huang L J, Liu B X, Ding J R, . Multifractal characteristics of magnetic-microsphere aggregates in thin films. Physical Review B , 1989, 40(1): 858–861
57 Li H, Ding Z, Wu Z. Multifractal behavior of the distribution of secondary-electron-emission sites on solid surfaces. Physical Review B , 1995, 51(19): 13554–13559
58 Li H, Ding Z-J, Wu Z. Multifractal analysis of the spatial distribution of secondary-electron emission sites. Physical Review B , 1996, 53(24): 16631–16636
59 Wang B, Wang Y, Wu Z. Multifractal behavior of solid-on-solid growth. Solid State Communications , 1995, 96(2): 69–72
60 Ohta S, Honjo H. Growth probability distribution in irregular fractal-like crystal growth of ammonium chloride. Physical Review Letters , 1988, 60(7): 611–614
61 Xu C, Tamaki J, Miura N, . Grain size effects on gas sensitivity of porous SnO2-based elements. Sensors and Actuators B: Chemical , 1991, 3(2): 147–155
62 Baumann T F, Kucheyev S O, Gash A E, . Facile synthesis of a crystalline, high-surface-area SnO2 aerogel. Advanced Materials , 2005, 17(12): 1546–1548
63 Cheng B, Russell J M, Shi W S, . Large-Scale, solution-phase growth of single-crystalline SnO2 nanorods. Journal of the American Chemical Society , 2004, 126(19): 5972–5973
64 Hu J Q, Bando Y, Liu Q L, . Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons. Advanced Functional Materials , 2003, 13(6): 493–496
65 McCarthy G, Welton J. X-ray diffraction data for SnO2. An illustration of the new powder data evaluation methods. Journal of Materials Characterization , 1989, 4(03): 156–159
66 Traylor J G, Smith H G, Nicklow R M, . Wilkinson, lattice dynamics of rutile. Physical Review B , 1971, 3(10): 3457–3472
67 Peercy P S, Morosin B. Pressure and temperature dependences of the Raman-active phonons in SnO2. Physical Review B , 1973, 7(6): 2779–2786
68 Diéguez A, Romano-Rodríguez A, Vilà A, . The complete Raman spectrum of nanometric SnO2 particles. Journal of Applied Physics , 2001, 90(3): 1550–1557
69 Wang G H, Han M. Structure and properties of nanocrystalline materials. Progress in Physics , 1990, 10(3): 248–289
70 Romanowski W. Equilibrium forms of very small metallic crystals. Surface Science , 1969, 18(2): 373–388
71 Jones F H, Dixon R, Foord J S, . The surface structure of SnO2(110)(4×1) revealed by scanning tunneling microscopy. Surface Science , 1997, 376(1–3): 367–373
72 Pagnier T, Boulova M, Galerie A, . In situ coupled Raman and impedance measurements of the reactivity of nanocrystalline SnO2 versus H2S. Journal of Solid State Chemistry , 1999, 143(1): 86–94
73 Hama T, Matsubara T. Self-consistent Einstein model and theory of anharmonic surface vibration. II Face-centered cubic lattice. Progress of Theoretical Physics , 1978, 59(5): 1407–1417
74 Hayashi S, Yamamoto K. Amorphous-like Raman spectra of semiconductor microcrystals. Superlattices and Microstructures , 1986, 2(6): 581–585
75 Dolbec R, El Khakani M A, Serventi A M, . Microstructure and physical properties of nanostructured tin oxide thin films grown by means of pulsed laser deposition. Thin Solid Films , 2002, 419(1–2): 230–236
76 Greskovich C, Lay K W. Grain growth in very porous Al2O3 compacts. Journal of the American Ceramic Society , 1972, 55(3): 142–146
77 Penn R L, Banfield J F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania. Geochimica et Cosmochimica Acta , 1999, 63(10): 1549–1557
78 Oviedo J, Gillan M J. Energetics and structure of stoichiometric SnO2 surfaces studied by first-principles calculations. Surface Science , 2000, 463(2): 93–101
79 Slater B, Catlow C R A, Gay D H, . Study of surface segregation of antimony on SnO2 surfaces by computer simulation techniques. The Journal of Physical Chemistry B , 1999, 103(48): 10644–10650
[1] Jingwei LU, Xiaotao ZHU, Xiao MIAO, Bo WANG, Yuanming SONG, Guina REN, Xiangming LI. An unusual superhydrophilic/superoleophobic sponge for oil--water separation[J]. Front. Mater. Sci., 2020, 14(3): 341-350.
[2] Huan-Yan XU, Dan LU, Xu HAN. Graphene-induced enhanced anticorrosion performance of waterborne epoxy resin coating[J]. Front. Mater. Sci., 2020, 14(2): 211-220.
[3] Xin LIU, Xiangling REN, Longfei TAN, Wenna GUO, Zhongbing HUANG, Xianwei MENG. Preparation and enhanced properties of ZrMOF@CdTe nanoparticles with high-density quantum dots[J]. Front. Mater. Sci., 2020, 14(2): 155-162.
[4] Mengke PENG, Fenyan HU, Minting DU, Bingjie MAI, Shurong ZHENG, Peng LIU, Changhao WANG, Yashao CHEN. Hydrothermal growth of hydroxyapatite and ZnO bilayered nanoarrays on magnesium alloy surface with antibacterial activities[J]. Front. Mater. Sci., 2020, 14(1): 14-23.
[5] Lei TANG, Tengfei LIU, Jinxu MA, Xiaowen ZHANG, Linan AN, Kepi CHEN. Ca2+ doping effects in (K, Na, Li)(Nb0.8Ta0.2)O3 lead-free piezoelectric ceramics[J]. Front. Mater. Sci., 2019, 13(4): 431-438.
[6] Pengzhang LI, Chuanjin TIAN, Wei YANG, Wenyan ZHAO, Zhe LÜ. LaNiO3 modified with Ag nanoparticles as an efficient bifunctional electrocatalyst for rechargeable zinc--air batteries[J]. Front. Mater. Sci., 2019, 13(3): 277-287.
[7] Chengzhi LUO, Guanghui LIU, Min ZHANG. Electric-field-induced microstructure modulation of carbon nanotubes for high-performance supercapacitors[J]. Front. Mater. Sci., 2019, 13(3): 270-276.
[8] Yuqiao CHENG, Yang YANG, Chunrong NIU, Zhe FENG, Wenhui ZHAO, Shuang LU. Progress in synthesis and application of zwitterionic Gemini surfactants[J]. Front. Mater. Sci., 2019, 13(3): 242-257.
[9] Ge JU, Muhammad Arif KHAN, Huiwen ZHENG, Zhongxun AN, Mingxia WU, Hongbin ZHAO, Jiaqiang XU, Lei ZHANG, Salma BILAL, Jiujun ZHANG. Honeycomb-like polyaniline for flexible and folding all-solid-state supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 133-144.
[10] Fang LIU, Xiangping JIANG, Chao CHEN, Xin NIE, Xiaokun HUANG, Yunjing CHEN, Hao HU, Chunyang SU. Structural, electrical and photoluminescence properties of Er3+-doped SrBi4Ti4O15--Bi4Ti3O12 inter-growth ceramics[J]. Front. Mater. Sci., 2019, 13(1): 99-106.
[11] Guangyu DUAN, Yan WANG, Junrong YU, Jing ZHU, Zuming HU. Improved thermal conductivity and dielectric properties of flexible PMIA composites with modified micro- and nano-sized hexagonal boron nitride[J]. Front. Mater. Sci., 2019, 13(1): 64-76.
[12] Zhicun WANG, Xiaoman HAN, Yixi WANG, Kenan MEN, Lin CUI, Jianning WU, Guihua MENG, Zhiyong LIU, Xuhong GUO. Facile preparation of low swelling, high strength, self-healing and pH-responsive hydrogels based on the triple-network structure[J]. Front. Mater. Sci., 2019, 13(1): 54-63.
[13] Maria COROŞ, Florina POGĂCEAN, Lidia MĂGERUŞAN, Crina SOCACI, Stela PRUNEANU. A brief overview on synthesis and applications of graphene and graphene-based nanomaterials[J]. Front. Mater. Sci., 2019, 13(1): 23-32.
[14] Cuicui HU, Huanhuan ZHANG, Yanjun XING. Alkylamine-mediated synthesis and photocatalytic properties of ZnO[J]. Front. Mater. Sci., 2019, 13(1): 33-42.
[15] Mengna CHEN, Peiyuan ZENG, Yueying ZHAO, Zhen FANG. CoP nanoparticles enwrapped in N-doped carbon nanotubes for high performance lithium-ion battery anodes[J]. Front. Mater. Sci., 2018, 12(3): 214-224.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed