Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2019, Vol. 13 Issue (1) : 64-76    https://doi.org/10.1007/s11706-019-0446-3
RESEARCH ARTICLE
Improved thermal conductivity and dielectric properties of flexible PMIA composites with modified micro- and nano-sized hexagonal boron nitride
Guangyu DUAN1, Yan WANG1, Junrong YU1, Jing ZHU2, Zuming HU1()
1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
2. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
 Download: PDF(2987 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A series of flexible poly(m-phenylene isophthalamide) (PMIA)-based composites with different sizes and mass fractions of hexagonal boron nitride (hBN) were successfully manufactured for the first time via the casting technique. The effects of modified hBN particles on microstructure, mechanical properties, dielectric properties and thermal conductivities of fabricated composites were investigated. The results indicate that modified hBN particles manifest good compatibility with the PMIA matrix. The Young’s modulus and Theat-resistance index of PMIA-based composites are increased with increasing the mass fraction of hBN particles. Due to additional thermal conductive paths and networks formed by nano-sized hBN particles, the K-m/n-hBN-30 composite displays the thermal conductivity of 0.94 W·m−1·K−1, higher than that of the K-m-hBN-30 composite (0.86 W·m−1·K−1), and more than 4 times higher than that of neat PMIA. Moreover, the obtained PMIA-based composites also show low dielectric constant and ideal dielectric loss. Owing to the excellent comprehensive performance, hBN/PMIA composites present potential applications in the broad field of electronic materials.

Keywords poly(m-phenylene isophthalamide) (PMIA)      thermal conductivity      hBN particles      dielectric property     
Corresponding Author(s): Zuming HU   
Online First Date: 22 February 2019    Issue Date: 07 March 2019
 Cite this article:   
Guangyu DUAN,Yan WANG,Junrong YU, et al. Improved thermal conductivity and dielectric properties of flexible PMIA composites with modified micro- and nano-sized hexagonal boron nitride[J]. Front. Mater. Sci., 2019, 13(1): 64-76.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-019-0446-3
https://academic.hep.com.cn/foms/EN/Y2019/V13/I1/64
Fig.1  Thermal conductivity models of different PMIA-based composites.
Fig.2  Morphologies of hBN particles: (a) micro-sized particles before the heat treatment; (b) micro-sized particles after the heat treatment; (c) nano-sized particles before the heat treatment; (d) nano-sized particles after the heat treatment.
Fig.3  Reaction procedures for the preparation of KH-550-modified hBN particles.
Fig.4  (a) FTIR spectra of pristine hBN, heat-treated hBN and K-m-hBN. (b) XPS survey scans of pristine hBN and K-m-hBN. (c) XRD curves of pristine hBN, K-m-hBN and K-n-hBN. (d) XRD curves of N-PMIA, K-m-hBN-30 and K-m/n-hBN-30.
Fig.5  SEM images of impact fractures of (a) N-PMIA, (b) K-m-hBN-10, (c) K-m/n-hBN-10, (d) K-m-hBN-20, (e) K-m/n-hBN-20, (f) K-m-hBN-30 and (g) K-m/n-hBN-30 (blue circles showing voids and white lines indicating thermal conductive paths).
Fig.6  (a) Tensile strength, (b) Young’s modulus, and (c) elongation at break values of K-m-hBN and K-m/n-hBN.
Fig.7  Transparency (upper) and flexibility (lower) of (a)(c) K-m-hBN-30 film and (b)(d) K-m/n-hBN-30 film.
Fig.8  (a) DSC curves of PMIA-based composites. (b) TGA curves of pristine hBN and K-m-hBN particles. (c) TGA curves of PMIA-based composites. (d) Partial enlargement of curves in (c).
Sample Mass loss temperature Theat-resistance index/°C Tg/°C
T5%/°C T10%/°C T30%/°C
N-PMIA 408.2 458.2 563.2 216.2 278.4
10% K-m-hBN 431.6 481.6 571.6 237.0 279.5
20% K-m-hBN 427.0 477.0 573.0 237.5 280.1
30% K-m-hBN 432.7 487.7 572.7 237.9 278.3
10% K-m/n-hBN 413.5 463.5 556.0 230.0 280.2
20% K-m/n-hBN 423.1 475.6 563.3 233.1 280.5
30% K-m/n-hBN 424.1 479.1 569.1 234.3 278.1
Tab.1  Characteristic thermal data of N-PMIA and its composites
Fig.9  (a)(b)(c)(d) Dielectric constants and dielectric losses curves of PMIA-based composites. (e)(f) Dielectric constants and dielectric losses curves of K-m-hBN-30 and K-m/n-hBN-30 before and after treating at 200 °C. (g) Dielectric strength of PMIA-based composites.
Sample Mass fraction/% Density/(kg·m−3) Specific heat capacity /(kJ·kg−1·K−1) Thermal diffusivity /(m2·s−1) Thermal conductivity /(W·m−1·K−1)
N-PMIA ? 1340 1370 1.26153×10−7 0.23
K-m-hBN 10 1460 1150 2.05675×10−7 0.35
20 1530 1020 3.0141×10−7 0.47
30 1610 940 5.65371×10−7 0.86
K-m/n-hBN 10 1470 1140 2.17215×10−7 0.36
20 1530 1030 3.61459×10−7 0.57
30 1620 930 6.25565×10−7 0.94
Tab.2  Thermal conductivities of N-PMIA and its PMIA-based composites
Fig.10  (a) Thermal conductivity and (b) thermal conductivity enhancement of PMIA-based composites with different mass fractions of hBN.
1 J MGarcía, F CGarcía, FSerna, et al.. High-performance aromatic polyamides. Progress in Polymer Science, 2010, 35(5): 623–686
https://doi.org/10.1016/j.progpolymsci.2009.09.002
2 XWang, Y Si, XWang, et al.. Tuning hierarchically aligned structures for high-strength PMIA‒MWCNT hybrid nanofibers. Nanoscale, 2013, 5(3): 886–889 PMID:23247563
https://doi.org/10.1039/C2NR33696K
3 C ELin, J Wang, M YZhou, et al.. Poly(m-phenylene isophthalamide) (PMIA): A potential polymer for breaking through the selectivity–permeability trade-off for ultrafiltration membranes. Journal of Membrane Science, 2016, 518: 72–78
https://doi.org/10.1016/j.memsci.2016.06.042
4 XTang, Y Si, JGe, et al.. In situ polymerized superhydrophobic and superoleophilic nanofibrous membranes for gravity driven oil‒water separation. Nanoscale, 2013, 5(23): 11657–11664 PMID:24100352
https://doi.org/10.1039/c3nr03937d
5 PNimmanpipug, K Tashiro, ORangsiman. Factors governing the three-dimensional hydrogen-bond network structure of poly(m-phenylene isophthalamide) and a series of its model compounds (4): similarity in local conformation and packing structure between a complicated three-arm model compound and the linear model compounds. The Journal of Physical Chemistry B, 2006, 110(42): 20858–20864
https://doi.org/10.1021/jp062058r pmid: 17048899
6 WKang, N Deng, XMa, et al.. A thermostability gel polymer electrolyte with electrospun nanofiber separator of organic F-doped poly-m-phenyleneisophthalamide for lithium-ion battery. Electrochimica Acta, 2016, 216: 276–286
https://doi.org/10.1016/j.electacta.2016.09.035
7 LMazzocchetti, T Benelli, EMaccaferri, et al.. Poly-m-aramid electrospun nanofibrous mats as high-performance flame retardants for carbon fiber reinforced composites. Composites Part B: Engineering, 2018, 145: 252–260
https://doi.org/10.1016/j.compositesb.2018.03.036
8 WChen, W Weng. Ultrafine lauric–myristic acid eutectic/poly (meta-phenylene isophthalamide) form-stable phase change fibers for thermal energy storage by electrospinning. Applied Energy, 2016, 173: 168–176
https://doi.org/10.1016/j.apenergy.2016.04.061
9 VMittal, ed. High Performance Polymers and Engineering Plastics. Beverly, USA: Scrivener Publishing LLC, 2011 doi:10.1002/9781118171950
10 L AUtracki. Characterization of high temperature polymer blends for specific applications: fuel cells and aerospace applications. In: DeMeuse M T, ed. High Temperature Polymer Blends. Cambridge: Woodhead Publishing Limited, 2014, 70‒129 doi:10.1533/9780857099013.70
11 R EAidani, P Nguyen-Tri, YMalajati, et al.. Photochemical aging of an e-PTFE/NOMEX® membrane used in firefighter protective clothing. Polymer Degradation and Stability, 2013, 98(7): 1300–1310
https://doi.org/10.1016/j.polymdegradstab.2013.04.002
12 MAkatsuka, Y Takezawa. Study of high thermal conductive epoxy resins containing controlled high-order structures. Journal of Applied Polymer Science, 2003, 89(9): 2464–2467
https://doi.org/10.1002/app.12489
14 CYu, J Zhang, ZLi, et al.. Enhanced through-plane thermal conductivity of boron nitride/epoxy composites. Composites Part A: Applied Science and Manufacturing, 2017, 98: 25–31
https://doi.org/10.1016/j.compositesa.2017.03.012
15 G HKim, D Lee, AShanker, et al.. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nature Materials, 2015, 14(3): 295–300
https://doi.org/10.1038/nmat4141 pmid: 25419813
16 WZhou. Thermal and dielectric properties of the AlN particles reinforced linear low-density polyethylene composites. Thermochimica Acta, 2011, 512(1–2): 183–188
https://doi.org/10.1016/j.tca.2010.10.003 pmid: 22039311
17 JChen, X Huang, BSun, et al.. Vertically aligned and interconnected boron nitride nanosheets for advanced flexible nanocomposite thermal interface materials. ACS Applied Materials & Interfaces, 2017, 9(36): 30909–30917
https://doi.org/10.1021/acsami.7b08061 pmid: 28825465
18 YJiang, Y Liu, PMin, et al.. BN@PPS core‒shell structure particles and their 3D segregated architecture composites with high thermal conductivities. Composites Science and Technology, 2017, 144: 63–69
https://doi.org/10.1016/j.compscitech.2017.03.023
19 J FFu, L Y Shi, Q D Zhong, et al.. Thermally conductive and electrically insulative nanocomposites based on hyperbranched epoxy and nano-Al2O3 particles modified epoxy resin. Polymers for Advanced Technologies, 2011, 22(6): 1032–1041
https://doi.org/10.1002/pat.1638
20 ZShi, R Fu, SAgathopoulos, et al.. Thermal conductivity and fire resistance of epoxy molding compounds filled with Si3N4 and Al(OH)3. Materials & Design, 2012, 34: 820–824
https://doi.org/10.1016/j.matdes.2011.07.012
21 W LSong, L M Veca, C Y Kong, et al.. Polymeric nanocomposites with graphene sheets — Materials and device for superior thermal transport properties. Polymer, 2012, 53(18): 3910–3916
https://doi.org/10.1016/j.polymer.2012.07.008
22 PDing, S Su, NSong, et al.. Highly thermal conductive composites with polyamide-6 covalently — grafted graphene by an in situ polymerization and thermal reduction process. Carbon, 2014, 66(3): 576–584
https://doi.org/10.1016/j.carbon.2013.09.041
23 MBozlar, D He, JBai, et al.. Carbon nanotube microarchitectures for enhanced thermal conduction at ultralow mass fraction in polymer composites. Advanced Materials, 2010, 22(14): 1654–1658
https://doi.org/10.1002/adma.200901955 pmid: 20496399
24 SYu, J W Lee, T H Han, et al.. Copper shell networks in polymer composites for efficient thermal conduction. ACS Applied Materials & Interfaces, 2013, 5(22): 11618–11622
https://doi.org/10.1021/am4030406 pmid: 24160688
25 WZhou, J Zuo, WRen. Thermal conductivity and dielectric properties of Al/PVDF composites. Composites Part A: Applied Science and Manufacturing, 2012, 43(4): 658–664
https://doi.org/10.1016/j.compositesa.2011.11.024
26 XWu, Z Yang, WKuang, et al.. Coating polyrhodanine onto boron nitride nanosheets for thermally conductive elastomer composites. Composites Part A: Applied Science and Manufacturing, 2017, 94: 77–85
https://doi.org/10.1016/j.compositesa.2016.12.015
27 K T SKong, MMariatti, A ARashid, et al.. Enhanced conductivity behavior of polydimethylsiloxane (PDMS) hybrid composites containing exfoliated graphite nanoplatelets and carbon nanotubes. Composites Part B: Engineering, 2014, 58(3): 457–462
https://doi.org/10.1016/j.compositesb.2013.10.039
28 ZLi, D Wang, MZhang, et al.. Enhancement of the thermal conductivity of polymer composites with Ag–graphene hybrids as fillers. physica status solidi (a), 2014, 211(9): 2142–2149
https://doi.org/10.1002/pssa.201431054
29 WYuan, Q Xiao, LLi, et al.. Thermal conductivity of epoxy adhesive enhanced by hybrid graphene oxide/AlN particles. Applied Thermal Engineering, 2016, 106: 1067–1074
https://doi.org/10.1016/j.applthermaleng.2016.06.089
30 JChen, X Huang, YZhu, et al.. Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Advanced Functional Materials, 2017, 27(5): 1604754
https://doi.org/10.1002/adfm.201604754
31 WDai, J Yu, ZLiu, et al.. Enhanced thermal conductivity and retained electrical insulation for polyimide composites with SiC nanowires grown on graphene hybrid fillers. Composites Part A: Applied Science and Manufacturing, 2015, 76: 73–81
https://doi.org/10.1016/j.compositesa.2015.05.017
32 WZhou, Y Gong, LTu, et al.. Dielectric properties and thermal conductivity of core–shell structured Ni@NiO/poly (vinylidene fluoride) composites. Journal of Alloys and Compounds, 2017, 693: 1–8
https://doi.org/10.1016/j.jallcom.2016.09.178
33 ZCui, A J Oyer, A J Glover, et al.. Large scale thermal exfoliation and functionalization of boron nitride. Small, 2014, 10(12): 2352–2355
https://doi.org/10.1002/smll.201303236 pmid: 24578306
34 M HTsai, I H Tseng, J C Chiang, et al.. Flexible polyimide films hybrid with functionalized boron nitride and graphene oxide simultaneously to improve thermal conduction and dimensional stability. ACS Applied Materials & Interfaces, 2014, 6(11): 8639–8645
https://doi.org/10.1021/am501323m pmid: 24863455
35 HFang, S L Bai, C P Wong. Thermal, mechanical and dielectric properties of flexible BN foam and BN nanosheets reinforced polymer composites for electronic packaging application. Composites Part A: Applied Science and Manufacturing, 2017, 100: 71–80
https://doi.org/10.1016/j.compositesa.2017.04.018
36 D SMuratov, D V Kuznetsov, I A Il’Inykh, et al.. Thermal conductivity of polypropylene composites filled with silane-modified hexagonal BN. Composites Science and Technology, 2015, 111: 40–43
https://doi.org/10.1016/j.compscitech.2015.03.003
37 GMittal, K Y Rhee, S J Park. Processing and characterization of PMMA/PI composites reinforced with surface functionalized hexagonal boron nitride. Applied Surface Science, 2016, 415(SI): 49–54 doi:10.1016/j.apsusc.2016.10.029
38 NGoldin, H Dodiuk, DLewitus. Enhanced thermal conductivity of photopolymerizable composites using surface modified hexagonal boron nitride fillers. Composites Science and Technology, 2017, 152: 36–45
https://doi.org/10.1016/j.compscitech.2017.09.001
39 KKim, M Kim, JKim. Thermal and mechanical properties of epoxy composites with a binary particle filler system consisting of aggregated and whisker type boron nitride particles. Composites Science and Technology, 2014, 103(103): 72–77
https://doi.org/10.1016/j.compscitech.2014.08.012
40 JGu, X Yang, ZLv, et al.. Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity. International Journal of Heat and Mass Transfer, 2016, 92: 15–22
https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.081
41 M WHuang, Y W Cheng, K Y Pan, et al.. The preparation and cathodoluminescence of ZnS nanowires grown by chemical vapor deposition. Applied Surface Science, 2012, 261(8): 665–670
https://doi.org/10.1016/j.apsusc.2012.08.079
42 IJang, K H Shin, I Yang, et al.. Enhancement of thermal conductivity of BN/epoxy composite through surface modification with silane coupling agents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 518: 64–72
https://doi.org/10.1016/j.colsurfa.2017.01.011
43 CPan, K Kou, QJia, et al.. Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent. Composites Part B: Engineering, 2017, 111: 83–90
https://doi.org/10.1016/j.compositesb.2016.11.050
44 SZhang, X Li, XGuan, et al.. Synthesis of pyridine-containing diamine and properties of its polyimides and polyimide/hexagonal boron nitride composite films. Composites Science and Technology, 2017, 152: 165–172
https://doi.org/10.1016/j.compscitech.2017.09.026
45 XYang, L Tang, YGuo, et al.. Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH2-POSS functionalized nBN fillers. Composites Part A: Applied Science and Manufacturing, 2017, 101: 237–242doi:10.1016/j.compositesa.2017.06.005
46 JYu, X Huang, CWu, et al.. Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer, 2012, 53(2): 471–480
https://doi.org/10.1016/j.polymer.2011.12.040
47 KKim, H Ju, JKim. Surface modification of BN/Fe3O4 hybrid particle to enhance interfacial affinity for high thermal conductive material. Polymer, 2016, 91: 74–80
https://doi.org/10.1016/j.polymer.2016.03.066
48 JGu, W Dong, YTang, et al.. Ultralow dielectric fluoride-containing cyanate ester resins combining with prominent mechanical properties and excellent thermal & dimension stabilities. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2017, 5(28): 6929–6936 doi:10.1039/C7TC00222J
49 YGong, W Zhou, YKou, et al.. Heat conductive h-BN/CTPB/epoxy with enhanced dielectric properties for potential high-voltage applications. High Voltage, 2017, 2(3): 172‒178 doi:10.1049/hve.2017.0053
50 XHuang, T Iizuka, PJiang, et al.. Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites. The Journal of Physical Chemistry C, 2012, 116(25): 13629–13639
https://doi.org/10.1021/jp3026545
51 HChen, V V Ginzburg, J Yang, et al.. Thermal conductivity of polymer-based composites: Fundamentals and applications. Progress in Polymer Science, 2016, 59: 41–85
https://doi.org/10.1016/j.progpolymsci.2016.03.001
52 NBurger, A Laachachi, MFerriol, et al.. Review of thermal conductivity in composites: Mechanisms, parameters and theory. Progress in Polymer Science, 2016, 61: 1–28
https://doi.org/10.1016/j.progpolymsci.2016.05.001
[1] Rui ZHAO, Weikai LI, Tian WANG, Ke ZHAN, Zheng YANG, Ya YAN, Bin ZHAO, Junhe YANG. Fabrication of Cu/graphite film/Cu sandwich composites with ultrahigh thermal conductivity for thermal management applications[J]. Front. Mater. Sci., 2020, 14(2): 188-197.
[2] Jun ZHAO, Hang ZHAN, Hai Tao CHEN, Jian Nong WANG. Preparation and thermal properties of layered porous carbon nanotube/epoxy resin composite films[J]. Front. Mater. Sci., 2019, 13(4): 382-388.
[3] U. Sandhya SHENOY, A. Nityananda SHETTY. A simple single-step approach towards synthesis of nanofluids containing cuboctahedral cuprous oxide particles using glucose reduction[J]. Front. Mater. Sci., 2018, 12(1): 74-82.
[4] Yan-Hao DONG, Chang-An WANG, Liang-Fa HU, Jun ZHOU. Numerical calculations of effective thermal conductivity of porous ceramics by image-based finite element method[J]. Front Mater Sci, 2012, 6(1): 79-86.
[5] G. NIXON SAMUEL VIJAYAKUMAR, M. RATHNAKUMARI, P. SURESHKUMAR. Electrical and non-linear optical studies on electrospun ZnO/BaO composite nanofibers[J]. Front Mater Sci, 2012, 6(1): 69-78.
[6] YU Zhi-ming, FANG Mei, XIAO Zhu. Effects of enhanced nucleation on the growth and thermal performance of diamond films deposited on BeO by hot filament CVD technique[J]. Front. Mater. Sci., 2008, 2(4): 369-374.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed