Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2020, Vol. 14 Issue (4) : 413-425    https://doi.org/10.1007/s11706-020-0525-5
RESEARCH ARTICLE
Micro-patterned hydroxyapatite/silk fibroin coatings on Mg--Zn--Y--Nd--Zr alloys for better corrosion resistance and cell behavior guidance
Lei CHANG1,2,3(), Xiangrui LI1,2, Xuhui TANG1, He ZHANG1, Ding HE1, Yujun WANG1, Jiayin ZHAO1, Jingan LI1,2,3, Jun WANG1,2,3, Shijie ZHU1,2,3, Liguo WANG1,2,3, Shaokang GUAN1,2,3()
1. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
2. Henan Key Laboratory of Advanced Magnesium Alloy, Zhengzhou 450001, China
3. Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
 Download: PDF(3593 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, a micro-patterned hydroxyapatite/silk fibroin (HA-SF) coating was firstly fabricated on the surface of Mg–Zn–Y–Nd–Zr alloy by template-assisted electrospraying technique coupling with spin coating technique. Two types of micro-patterns were achieved with high contour accuracy, namely HA-SF(line-pattern) and HA-SF(dot-pattern). The microstructure, composition, surface wettability and corrosion behaviors of the coatings were investigated by SEM, EDS, FTIR, XRD, water contact angle and potentiodynamic polarization test. The results revealed the hydrophilic nature of coatings and two orders of magnitude reduction of corrosion density (icorr) as compared with that of the substrate. All the micro-patterned surfaces promoted the attachment of MC3T3-E1 cells with visible filopodia after 1 d incubation. In addition, coatings with line pattern exhibited the superior guidance to cell migration as compared to dot pattern, and the preference of cell attachment in the convex zone was observed. In summary, the obtained micro-patterned HA-SF coatings possessed the remarkably improvement of anticorrosion ability and good efficacy in guidance of cell attachment and alignment, which can serve as a promising strategy for cellular response modulation at the interface of magnesium-based implants and bone.

Keywords magnesium alloy      silk fibroin      hydroxyapatite      micro-patterned surface      electrospraying technique     
Corresponding Author(s): Lei CHANG,Shaokang GUAN   
Online First Date: 25 September 2020    Issue Date: 09 December 2020
 Cite this article:   
Lei CHANG,Xiangrui LI,Xuhui TANG, et al. Micro-patterned hydroxyapatite/silk fibroin coatings on Mg--Zn--Y--Nd--Zr alloys for better corrosion resistance and cell behavior guidance[J]. Front. Mater. Sci., 2020, 14(4): 413-425.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-020-0525-5
https://academic.hep.com.cn/foms/EN/Y2020/V14/I4/413
Fig.1  Scheme of preparing micro-patterned HA-SF coatings on Mg–Zn–Y–Nd–Zr alloy.
Fig.2  Representative images of (a) stencil mask of micro-line pattern, (b) HA(line-pattern) coating, (c) HA-SF(line-pattern) coating, (d) Mg–Zn–Y–Nd–Zr, (e) stencil mask of micro-dot pattern, (f) HA(dot-pattern) coating, (g) HA-SF(dot-pattern) coating, and (h) HF-treated Mg alloy. (i)(j)(k)(l) Images of (b)(f)(c)(g) at high magnifications, respectively.
Spectrum Content/wt.% (Content/at.%)
C O F Mg P Ca
#1 5.27 (10.56) 1.86 (2.80) 86.72 (85.89)
#2 4.36 (8.56) 2.19 (3.23) 8.22 (10.22) 79.65 (77.32)
#3 8.13 (16.4) 16.36 (24.76) 6.75 (8.61) 29.88 (29.76) 10.36 (8.10) 18.45 (11.15)
#4 4.39 (8.28) 1.85 (2.62) 10.77 (12.86) 80.96 (75.53)
#5 21.34 (34.46) 21.15 (25.67) 3.03 (3.09) 28.64 (22.86) 9.65 (6.05) 16.21 (7.86)
#6 12.05 (21.04) 2.05 (2.69) 8.93 (9.85) 12.05 (21.04)
Tab.1  Chemical composition of specific zones in Fig. 2
Fig.3  (a) The cross-section morphology of HA-SF(line-pattern) coating and (b)(c)(d)(e) corresponding EDS mapping images of Mg, C, Ca and F.
Fig.4  (a) FTIR spectra of Mg–Zn–Y–Nd–Zr substrate, SF and HA-SF(line-pattern) coatings. (b) XRD patterns of Mg–Zn–Y–Nd–Zr substrate, HA and HA-SF(line-pattern) coatings.
Fig.5  Surface wettability of Mg–Zn–Y–Nd–Zr substrate, HF-treated Mg alloy, SF, HA-SF, HA-SF(dot-pattern) and HA-SF(line-pattern) coatings.
Fig.6  3D topography of surface: (a) Mg–Zn–Y–Nd–Zr; (b) HF-treated Mg alloy; (c) HA-SF(line-pattern) coating. (d) Top views of HA-SF(dot-pattern) coating and HA-SF(line-pattern) coating.
Fig.7  Electrochemical measurements of Mg–Zn–Y–Nd–Zr substrate, HF-treated Mg alloy, HA(line-pattern) and HA-SF(line-pattern) coatings: (a) Nyquist plots; (b) Bode plots; (c) polarization curves.
Specimen Ecorr/V icorr/(A·cm−2)
Mg–Zn–Y–Nd–Zr −1.47 4.34E−07
HF-treated Mg alloy −1.41 2.12E−08
HA(line-pattern) −1.30 9.37E−09
HA-SF(line-pattern) −1.40 5.71E−09
Tab.2  Corrosion potentials and current densities recorded in Fig. 7
Fig.8  Morphology and statistical analysis of MC3T3-E1 cells attached on various specimens in vitro: Fluorescence micrograph of cells cultured for 24 h on (a) Mg–Zn–Y–Nd–Zr, (b) HF-treated Mg alloy, (c) HA-SF(dot-pattern) and (d) HA-SF(line-pattern); Statistical analysis of (e) number of cell adhesion, (f) cell spreading area and (g) long axis of cell nucleus; Representative 3D reconstruction CLSM images of spatial growth and attachment sites of cells on (h) HA-SF(line-pattern) and (i) HA-SF(dot-pattern) coatings; Statistical analysis of (j) number of cell adhesion and (k) cell spreading area on the convex and concave zones of both HA-SF(dot-pattern) and HA-SF(line-pattern) coatings. * represents a comparison with Mg–Zn–Y–Nd–Zr, and # represents that with other groups.
1 F Witte. The history of biodegradable magnesium implants: A review. Acta Biomaterialia, 2010, 6(5): 1680–1692
https://doi.org/10.1016/j.actbio.2010.02.028 pmid: 20172057
2 J L Wang, J K Xu, C Hopkins, et al.. Biodegradable magnesium-based implants in orthopedics — A general review and perspectives. Advanced Science, 2020, 7(8): 1902443
https://doi.org/10.1002/advs.201902443 pmid: 32328412
3 D Zhao, F Witte, F Lu, et al.. Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. Biomaterials, 2017, 112: 287–302
https://doi.org/10.1016/j.biomaterials.2016.10.017 pmid: 27770632
4 Y F Zheng, X N Gu, F Witte. Biodegradable metals. Materials Science and Engineering R: Reports, 2014, 77: 1–34
https://doi.org/10.1016/j.mser.2014.01.001
5 Y Liu, Y F Zheng, X H Chen, et al.. Fundamental theory of biodegradable metals-definition, criteria, and design. Advanced Functional Materials, 2019, 29(18): 1805402
https://doi.org/10.1002/adfm.201805402
6 L Li, M Zhang, Y Li, et al.. Corrosion and biocompatibility improvement of magnesium-based alloys as bone implant materials: a review. Regenerative Biomaterials, 2017, 4(2): 129–137
https://doi.org/10.1093/rb/rbx004
7 S Agarwal, J Curtin, B Duffy, et al.. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Materials Science and Engineering C, 2016, 68: 948–963
https://doi.org/10.1016/j.msec.2016.06.020 pmid: 27524097
8 S V Dorozhkin. Calcium orthophosphate coatings on magnesium and its biodegradable alloys. Acta Biomaterialia, 2014, 10(7): 2919–2934
https://doi.org/10.1016/j.actbio.2014.02.026 pmid: 24607420
9 L Y Li, L Y Cui, R C Zeng, et al.. Advances in functionalized polymer coatings on biodegradable magnesium alloys — A review. Acta Biomaterialia, 2018, 79: 23–36
https://doi.org/10.1016/j.actbio.2018.08.030 pmid: 30149212
10 Z Z Yin, W C Qi, R C Zeng, et al.. Advances in coatings on biodegradable magnesium alloys. Journal of Magnesium and Alloys, 2020, 8(1): 42–65
https://doi.org/10.1016/j.jma.2019.09.008
11 G S Wu, J M Ibrahim, P K Chu. Surface design of biodegradable magnesium alloys — A review. Surface and Coatings Technology, 2013, 233: 2–12
https://doi.org/10.1016/j.surfcoat.2012.10.009
12 M B Kannan. Electrochemical deposition of calcium phosphates on magnesium and its alloys for improved biodegradation performance: A review. Surface and Coatings Technology, 2016, 301: 36–41
https://doi.org/10.1016/j.surfcoat.2015.12.044
13 H X Wang, S J Zhu, L G Wang, et al.. Formation mechanism of Ca-deficient hydroxyapatite coating on Mg–Zn–Ca alloy for orthopaedic implant. Applied Surface Science, 2014, 307: 92–100
https://doi.org/10.1016/j.apsusc.2014.03.172
14 Y W Song, D Y Shan, E H Han. Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Materials Letters, 2008, 62(17–18): 3276–3279
https://doi.org/10.1016/j.matlet.2008.02.048
15 Y S Feng, X Ma, L Chang, et al.. Characterization and cytocompatibility of polydopamine on MAO-HA coating supported on Mg–Zn–Ca alloy. Surface and Interface Analysis, 2017, 49(11): 1115–1123
https://doi.org/10.1002/sia.6286
16 X Ma, S J Zhu, L G Wang, et al.. Synthesis and properties of a bio-composite coating formed on magnesium alloy by one-step method of micro-arc oxidation. Journal of Alloys and Compounds, 2014, 590: 247–253
https://doi.org/10.1016/j.jallcom.2013.12.145
17 Z Wang, X Wang, Y Tian, et al.. Degradation and osteogenic induction of a SrHPO4-coated Mg–Nd–Zn–Zr alloy intramedullary nail in a rat femoral shaft fracture model. Biomaterials, 2020, 247: 119962
https://doi.org/10.1016/j.biomaterials.2020.119962 pmid: 32251929
18 T L Wang, G Z Yang, W C Zhou, et al.. One-pot hydrothermal synthesis, in vitro biodegradation and biocompatibility of Sr-doped nanorod/nanowire hydroxyapatite coatings on ZK60 magnesium alloy. Journal of Alloys and Compounds, 2019, 799: 71–82
https://doi.org/10.1016/j.jallcom.2019.05.338
19 X Qiu, P Wan, L Tan, et al.. Preliminary research on a novel bioactive silicon doped calcium phosphate coating on AZ31 magnesium alloy via electrodeposition. Materials Science and Engineering C, 2014, 36: 65–76
https://doi.org/10.1016/j.msec.2013.11.041 pmid: 24433888
20 Y Feng, S Zhu, L Wang, et al.. Characterization and corrosion property of nano-rod-like HA on fluoride coating supported on Mg–Zn–Ca alloy. Bioactive Materials, 2017, 2(2): 63–70
https://doi.org/10.1016/j.bioactmat.2017.05.001 pmid: 29744413
21 Y J Lu, P Wan, L L Tan, et al.. Preliminary study on a bioactive Sr containing Ca–P coating on pure magnesium by a two-step procedure. Surface and Coatings Technology, 2014, 252: 79–86
https://doi.org/10.1016/j.surfcoat.2014.04.048
22 J J Han, P Wan, Y Sun, et al.. Fabrication and evaluation of a bioactive Sr–Ca–P contained micro-arc oxidation coating on magnesium strontium alloy for bone repair application. Journal of Materials Science & Technology, 2016, 32(3): 233–244
https://doi.org/10.1016/j.jmst.2015.11.012
23 S M Kim, M H Kang, H E Kim, et al.. Innovative micro-textured hydroxyapatite and poly(l-lactic)-acid polymer composite film as a flexible, corrosion resistant, biocompatible, and bioactive coating for Mg implants. Materials Science and Engineering C, 2017, 81: 97–103
https://doi.org/10.1016/j.msec.2017.07.026 pmid: 28888023
24 Q H Bao, L Q Zhao, H M Jing, et al.. Microstructure of hydroxyapatite/collagen coating on AZ31 magnesium alloy by a solution treatment. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 2017, 30: 38–44
https://doi.org/10.4028/www.scientific.net/JBBBE.30.38
25 P Xiong, Z J Jia, M Li, et al.. Biomimetic Ca, Sr/P-doped silk fibroin films on Mg–1Ca alloy with dramatic corrosion resistance and osteogenic activities. ACS Biomaterials Science & Engineering, 2018, 4(9): 3163–3176
https://doi.org/10.1021/acsbiomaterials.8b00787
26 M Li, P Xiong, M S Mo, et al.. Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications. Frontiers of Materials Science, 2016, 10(3): 270–280
https://doi.org/10.1007/s11706-016-0347-7
27 Y R Zhu, Y Y Chen, G H Xu, et al.. Micropattern of nano-hydroxyapatite/silk fibroin composite onto Ti alloy surface via template-assisted electrostatic spray deposition. Materials Science and Engineering C, 2012, 32(2): 390–394
https://doi.org/10.1016/j.msec.2011.11.002
28 W Huang, S Ling, C Li, et al.. Silkworm silk-based materials and devices generated using bio-nanotechnology. Chemical Society Reviews, 2018, 47(17): 6486–6504
https://doi.org/10.1039/C8CS00187A pmid: 29938722
29 D N Rockwood, R C Preda, T Yücel, et al.. Materials fabrication from Bombyx mori silk fibroin. Nature Protocols, 2011, 6(10): 1612–1631
https://doi.org/10.1038/nprot.2011.379 pmid: 21959241
30 H Fang, C X Wang, S C Zhou, et al.. Enhanced adhesion and anticorrosion of silk fibroin coated biodegradable Mg–Zn–Ca alloy via a two-step plasma activation. Corrosion Science, 2020, 168: 108466
https://doi.org/10.1016/j.corsci.2020.108466
31 C Wang, H Fang, C Hang, et al.. Fabrication and characterization of silk fibroin coating on APTES pretreated Mg–Zn–Ca alloy. Materials Science and Engineering C, 2020, 110: 110742
https://doi.org/10.1016/j.msec.2020.110742 pmid: 32204050
32 C Wang, H Fang, X Qi, et al.. Silk fibroin film-coated MgZnCa alloy with enhanced in vitro and in vivo performance prepared using surface activation. Acta Biomaterialia, 2019, 91: 99–111
https://doi.org/10.1016/j.actbio.2019.04.048 pmid: 31028907
33 Y Wang, X R Li, Q Wang, et al.. Preliminary biocompatibility and neurotoxicity assessment of silk fibroin coated magnesium alloys for peripheral nerve repairs. Basic & Clinical Pharmacology & Toxicology, 2019, 124(S3): 46–47
34 S Wang, J Li, Z Zhou, et al.. Micro-/nano-scales direct cell behavior on biomaterial surfaces. Molecules, 2019, 24(1): 75
https://doi.org/10.3390/molecules24010075 pmid: 30587800
35 G Wu, P Li, H Feng, et al.. Engineering and functionalization of biomaterials via surface modification. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2015, 3(10): 2024–2042
https://doi.org/10.1039/C4TB01934B pmid: 32262371
36 X Y Liu, P K Chu, C X Ding. Surface nano-functionalization of biomaterials. Materials Science and Engineering R: Reports, 2010, 70(3–6): 275–302
https://doi.org/10.1016/j.mser.2010.06.013
37 C Zhao, X Wang, L Gao, et al.. The role of the micro-pattern and nano-topography of hydroxyapatite bioceramics on stimulating osteogenic differentiation of mesenchymal stem cells. Acta Biomaterialia, 2018, 73: 509–521
https://doi.org/10.1016/j.actbio.2018.04.030 pmid: 29678674
38 F Zhang, G Li, P Yang, et al.. Fabrication of biomolecule-PEG micropattern on titanium surface and its effects on platelet adhesion. Colloids and Surfaces B: Biointerfaces, 2013, 102: 457–465
https://doi.org/10.1016/j.colsurfb.2012.02.018 pmid: 23010130
39 A Klymov, J Song, X Cai, et al.. Increased acellular and cellular surface mineralization induced by nanogrooves in combination with a calcium-phosphate coating. Acta Biomaterialia, 2016, 31: 368–377
https://doi.org/10.1016/j.actbio.2015.11.061 pmid: 26691523
40 M Li, X Fu, H Gao, et al.. Regulation of an osteon-like concentric microgrooved surface on osteogenesis and osteoclastogenesis. Biomaterials, 2019, 216: 119269
https://doi.org/10.1016/j.biomaterials.2019.119269 pmid: 31247479
41 Q Huang, T A Elkhooly, X Liu, et al.. Effects of hierarchical micro/nano-topographies on the morphology, proliferation and differentiation of osteoblast-like cells. Colloids and Surfaces B: Biointerfaces, 2016, 145: 37–45
https://doi.org/10.1016/j.colsurfb.2016.04.031 pmid: 27137801
42 J Mesquita-Guimarães, R Detsch, A C Souza, et al.. Cell adhesion evaluation of laser-sintered HAp and 45S5 bioactive glass coatings on micro-textured zirconia surfaces using MC3T3-E1 osteoblast-like cells. Materials Science and Engineering C, 2020, 109: 110492
https://doi.org/10.1016/j.msec.2019.110492 pmid: 32228989
43 M G Holthaus, J Stolle, L Treccani, et al.. Orientation of human osteoblasts on hydroxyapatite-based microchannels. Acta Biomaterialia, 2012, 8(1): 394–403
https://doi.org/10.1016/j.actbio.2011.07.031 pmid: 21855660
44 L Chen, D Wang, F Peng, et al.. Nanostructural surfaces with different elastic moduli regulate the immune response by stretching macrophages. Nano Letters, 2019, 19(6): 3480–3489
https://doi.org/10.1021/acs.nanolett.9b00237 pmid: 31091110
45 X Song, L Chang, J Wang, et al.. Investigation on the in vitro cytocompatibility of Mg–Zn–Y–Nd–Zr alloys as degradable orthopaedic implant materials. Journal of Materials Science: Materials in Medicine, 2018, 29(4): 44
https://doi.org/10.1007/s10856-018-6050-8 pmid: 29603023
46 J F Wang, H B Zhou, L G Wang, et al.. Microstructure, mechanical properties and deformation mechanisms of an as-cast Mg–Zn–Y–Nd–Zr alloy for stent applications. Journal of Materials Science & Technology, 2019, 35(7): 1211–1217
https://doi.org/10.1016/j.jmst.2019.01.007
47 J W Xie, A Rezvanpour, C H Wang, et al.. Electric field controlled electrospray deposition for precise particle pattern and cell pattern formation. AIChE Journal, 2010, 56(10): 2607–2621
https://doi.org/10.1002/aic.12198
48 K N Al-Milaji, H Zhao. Fabrication of superoleophobic surfaces by mask-assisted electrospray. Applied Surface Science, 2017, 396: 955–964
https://doi.org/10.1016/j.apsusc.2016.11.067
49 K Higashi, K Uchida, A Hotta, et al.. Micropatterning of silica nanoparticles by electrospray deposition through a stencil mask. Journal of Laboratory Automation, 2014, 19(1): 75–81
https://doi.org/10.1177/2211068213495205 pmid: 23821680
50 G Munir, G Koller, L Di Silvio, et al.. The pathway to intelligent implants: osteoblast response to nano silicon-doped hydroxyapatite patterning. Journal of the Royal Society Interface, 2011, 8(58): 678–688
https://doi.org/10.1098/rsif.2010.0548 pmid: 21208969
51 W Cui, E Beniash, E Gawalt, et al.. Biomimetic coating of magnesium alloy for enhanced corrosion resistance and calcium phosphate deposition. Acta Biomaterialia, 2013, 9(10): 8650–8659
https://doi.org/10.1016/j.actbio.2013.06.031 pmid: 23816653
52 X L He, X W Huang, Q Lu, et al.. Nanoscale control of silks for regular hydroxyapatite formation. Progress in Natural Science: Materials International, 2012, 22(2): 115–119
https://doi.org/10.1016/j.pnsc.2012.03.001
53 P Xiong, Z Jia, W Zhou, et al.. Osteogenic and pH stimuli-responsive self-healing coating on biomedical Mg–1Ca alloy. Acta Biomaterialia, 2019, 92: 336–350
https://doi.org/10.1016/j.actbio.2019.05.027 pmid: 31085364
54 Z J Jia, W H Zhou, J L Yan, et al.. Constructing multilayer silk protein/nanosilver biofunctionalized hierarchically structured 3D printed Ti6Al4V scaffold for repair of infective bone defects. ACS Biomaterials Science & Engineering, 2019, 5(1): 244–261
https://doi.org/10.1021/acsbiomaterials.8b00857
55 W P Feng, S Y Feng, K Y Tang, et al.. A novel composite of collagen-hydroxyapatite/kappa-carrageenan. Journal of Alloys and Compounds, 2017, 693: 482–489
https://doi.org/10.1016/j.jallcom.2016.09.234
56 F Han, Y Hu, J Li, et al.. In situ silk fibroin-mediated crystal formation of octacalcium phosphate and its application in bone repair. Materials Science and Engineering C, 2019, 95: 1–10
https://doi.org/10.1016/j.msec.2018.10.041 pmid: 30573229
57 J P Chen, S H Chen, G J Lai. Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture. Nanoscale Research Letters, 2012, 7(1): 170 (11 pages)
https://doi.org/10.1186/1556-276X-7-170 pmid: 22394697
58 Z Zheng, Y Wei, S Yan, et al.. Preparation of regenerated Antheraea yamamai silk fibroin film and controlled-molecular conformation changes by aqueous ethanol treatment. Journal of Applied Polymer Science, 2010, 116(1): 461–467
https://doi.org/10.1002/app.31522
59 Q You, Q Li, H Zheng, et al.. Discerning silk produced by Bombyx mori from those produced by wild species using an enzyme-linked immunosorbent assay combined with conventional methods. Journal of Agricultural and Food Chemistry, 2017, 65(35): 7805–7812
https://doi.org/10.1021/acs.jafc.7b02789 pmid: 28796495
60 R Agarwal, A J García. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Advanced Drug Delivery Reviews, 2015, 94: 53–62
https://doi.org/10.1016/j.addr.2015.03.013 pmid: 25861724
61 Z M Qiu, F Zhang, J T Chu, et al.. Corrosion resistance and hydrophobicity of myristic acid modified Mg–Al LDH/Mg(OH)2 steam coating on magnesium alloy AZ31. Frontiers of Materials Science, 2020, 14(1): 96–107
https://doi.org/10.1007/s11706-020-0492-x
62 X L Fan, C Y Li, Y B Wang, et al.. Corrosion resistance of an amino acid-bioinspired calcium phosphate coating on magnesium alloy AZ31. Journal of Materials Science & Technology, 2020, 49: 224–235
https://doi.org/10.1016/j.jmst.2020.01.046
63 S Wang, S J Zhu, X Q Zhang, et al.. Effects of degradation products of biomedical magnesium alloys on nitric oxide release from vascular endothelial cells. Medical Gas Research, 2019, 9(3): 153–159
https://doi.org/10.1002/mrm.27360 pmid: 31552880
[1] Xiang SUN, Qing-Song YAO, Yu-Chao LI, Fen ZHANG, Rong-Chang ZENG, Yu-Hong ZOU, Shuo-Qi LI. Biocorrosion resistance and biocompatibility of Mg--Al layered double hydroxide/poly(L-lactic acid) hybrid coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(4): 426-441.
[2] Zheng-Zheng YIN, Wei HUANG, Xiang SONG, Qiang ZHANG, Rong-Chang ZENG. Self-catalytic degradation of iron-bearing chemical conversion coating on magnesium alloys ---- Influence of Fe content[J]. Front. Mater. Sci., 2020, 14(3): 296-313.
[3] Zai-Meng QIU, Fen ZHANG, Jun-Tong CHU, Yu-Chao LI, Liang SONG. Corrosion resistance and hydrophobicity of myristic acid modified Mg--Al LDH/Mg(OH)2 steam coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(1): 96-107.
[4] Mengke PENG, Fenyan HU, Minting DU, Bingjie MAI, Shurong ZHENG, Peng LIU, Changhao WANG, Yashao CHEN. Hydrothermal growth of hydroxyapatite and ZnO bilayered nanoarrays on magnesium alloy surface with antibacterial activities[J]. Front. Mater. Sci., 2020, 14(1): 14-23.
[5] Chengzhi YANG, Shikun CHEN, Huilan SU, Haoyue ZHANG, Jianfei TANG, Cuiping GUO, Fang SONG, Wang ZHANG, Jiajun GU, Qinglei LIU. Biocompatible, small-sized and well-dispersed gold nanoparticles regulated by silk fibroin fiber from Bombyx mori cocoons[J]. Front. Mater. Sci., 2019, 13(2): 126-132.
[6] Xiao-Jing JI, Qiang CHENG, Jing WANG, Yan-Bin ZHAO, Zhuang-Zhuang HAN, Fen ZHANG, Shuo-Qi LI, Rong-Chang ZENG, Zhen-Lin WANG. Corrosion resistance and antibacterial effects of hydroxyapatite coating induced by polyacrylic acid and gentamicin sulfate on magnesium alloy[J]. Front. Mater. Sci., 2019, 13(1): 87-98.
[7] Lian GUO, Fen ZHANG, Jun-Cai LU, Rong-Chang ZENG, Shuo-Qi LI, Liang SONG, Jian-Min ZENG. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys[J]. Front. Mater. Sci., 2018, 12(2): 198-206.
[8] Ling-Yu LI, Bin LIU, Rong-Chang ZENG, Shuo-Qi LI, Fen ZHANG, Yu-Hong ZOU, Hongwei (George) JIANG, Xiao-Bo CHEN, Shao-Kang GUAN, Qing-Yun LIU. In vitro corrosion of magnesium alloy AZ31 --- a synergetic influence of glucose and Tris[J]. Front. Mater. Sci., 2018, 12(2): 184-197.
[9] Feng LI, Yang LIU, Xu-Bo LI. Dynamic recrystallization behavior of AZ31 magnesium alloy processed by alternate forward extrusion[J]. Front. Mater. Sci., 2017, 11(3): 296-305.
[10] Tao JIN,Fan-mei KONG,Rui-qin BAI,Ru-liang ZHANG. Anti-corrosion mechanism of epoxy-resin and different content Fe2O3 coatings on magnesium alloy[J]. Front. Mater. Sci., 2016, 10(4): 367-374.
[11] Li-Da HOU,Zhen LI,Yu PAN,MuhammadIqbal SABIR,Yu-Feng ZHENG,Li LI. A review on biodegradable materials for cardiovascular stent application[J]. Front. Mater. Sci., 2016, 10(3): 238-259.
[12] Yu-Hong ZOU,Rong-Chang ZENG,Qing-Zhao WANG,Li-Jun LIU,Qian-Qian XU,Chuang WANG,Zhiwei LIU. Blood compatibility of zinc–calcium phosphate conversion coating on Mg–1.33Li–0.6Ca alloy[J]. Front. Mater. Sci., 2016, 10(3): 281-289.
[13] Ming LI,Pan XIONG,Maosong MO,Yan CHENG,Yufeng ZHENG. Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications[J]. Front. Mater. Sci., 2016, 10(3): 270-280.
[14] Lan-Yue CUI,Rong-Chang ZENG,Xiao-Xiao ZHU,Ting-Ting PANG,Shuo-Qi LI,Fen ZHANG. Corrosion resistance of biodegradable polymeric layer-by-layer coatings on magnesium alloy AZ31[J]. Front. Mater. Sci., 2016, 10(2): 134-146.
[15] Tong WANG,Qing LI,Gui-feng ZHANG,Gang ZHOU,Xin YU,Jing ZHANG,Xiu-mei WANG,Zhi-hui TANG. Comparative evaluation of a biomimic collagen/hydroxyapatite/β-tricaleium phosphate scaffold in alveolar ridge preservation with Bio-Oss Collagen[J]. Front. Mater. Sci., 2016, 10(2): 122-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed