Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2020, Vol. 14 Issue (3) : 296-313    https://doi.org/10.1007/s11706-020-0512-x
RESEARCH ARTICLE
Self-catalytic degradation of iron-bearing chemical conversion coating on magnesium alloys ---- Influence of Fe content
Zheng-Zheng YIN1, Wei HUANG1, Xiang SONG1, Qiang ZHANG1, Rong-Chang ZENG1,2()
1. Corrosion Laboratory for Light Metals, College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
 Download: PDF(4983 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A number of industrial and biomedical fields, such as hydraulic fracturing balls for gas and petroleum exploitation and implant materials, require Mg alloys with rapid dissolution. An iron-bearing phosphate chemical conversion (PCC) coating with self-catalytic degradation function was fabricated on the Mg alloy AZ31. Surface morphologies, chemical compositions and degradation behaviors of the PCC coating were investigated through FE-SEM, XPS, XRD, FTIR, electrochemical and hydrogen evolution tests. Results indicated that the PCC coating was characterized by iron, its phosphates and hydroxides, amorphous Mg(OH)2 and Mg3−n(HnPO4)2. The self-catalytic degradation effects were predominately concerned with the Fe concentration, chemical composition and microstructure of the PCC coating, which were ascribed to the galvanic corrosion between Fe in the PCC coating and the Mg substrate. The coating with higher Fe content and porous microstructure exhibited a higher degradation rate than that of the AZ31 substrate, while the coating with a trace of Fe and compact surface disclosed a slightly enhanced corrosion resistance for the AZ31 substrate.

Keywords magnesium alloy      iron-bearing chemical conversion coating      self-catalytic degradation      galvanic corrosion     
Corresponding Author(s): Rong-Chang ZENG   
Online First Date: 31 July 2020    Issue Date: 10 September 2020
 Cite this article:   
Zheng-Zheng YIN,Wei HUANG,Xiang SONG, et al. Self-catalytic degradation of iron-bearing chemical conversion coating on magnesium alloys ---- Influence of Fe content[J]. Front. Mater. Sci., 2020, 14(3): 296-313.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-020-0512-x
https://academic.hep.com.cn/foms/EN/Y2020/V14/I3/296
Fig.1  Thermo-equilibrium predominance area diagram for Fe2+ ions calculated using the MEDUSA software package at c( PO43 ) = 0.1 mol·L−1, c(Fe2+) from 10−6 to 10 mol·L−1 and pH from 0 to 12. The different formulations were indicated by I, II and III, respectively.
Solution c(FeSO4·7H2O)/(mmol·L−1) c(Na3PO4·12H2O)/(mmol·L−1) pH
I 100 100 3.27
II 34.4 100 3.77
III 8.43 100 4.27
Tab.1  Compositions and pH values of the coatings fabricated in three different solutions
Fig.2  SEM images of (a)(b) coating I, (c)(d) coating II and (e)(f) coating III. Results obtained from (g) EDS, (h) XRD and (i) FTIR.
Fig.3  Cross-sectional morphologies and corresponding elemental mappings of (a) coating I, (b) coating II and (c) coating III.
Fig.4  Coating I on the AZ31 Mg alloy: (a) XPS survey; (b)(c)(d)(e) high resolutions of O 1s, Mg 1s, P 2p and Fe 2p; (f) element contents after different etch time.
Fig.5  OCP as a function of immersion time in 3.5 wt.% NaCl.
Fig.6  EIS results of (a) Nyquist plots, (b) enlarged Nyquist plots, (c) Bode plots of Zmod, and (d) phase angles of coatings and the bare AZ31 substrate in 3.5 wt.% NaCl. ECs of (e) the AZ31 substrate and (f) coatings.
Sample Rs
/(Ω·cm2)
CPE
/(Ω−1·sn·cm−2)
n Rct
/(Ω·cm2)
RL(Mg2+)
/(Ω·cm2)
L(Mg2+)
/(H·cm2)
RL
/(Ω·cm2)
L
/(H·cm2)
Substrate 24.01 1.35×10−5 0.96 207 140 150
Coating-I 22.55 7.39×10−5 1 3.13 9.98×10−3 41.5 6.13 1.37
Coating-II 22.55 5.27×10−5 1 18.16 44.06 16.57 2.14 2.30
Coating-III 24.34 4.56×10−5 1 25.43 2.20 334 52.68 32.32
Tab.2  Electrochemical data obtained via equivalent circuit fitting of the EIS curves
Fig.7  Polarization curves after OCP (lasting for 1000 s) and EIS tests for AZ31 and coatings (I–III) immersed in 3.5 wt.% NaCl solution.
Sample βa/(mV·dec−1) βc/(mV·dec−1) Ecorr/V vs. SCE icorr/(A·cm−2) Rp/(Ω·cm2)
Substrate 45.60 96.87 −1.42 3.18×10−5 6.01×105
Coating-I 92.06 151.99 −1.38 5.69×10−4 4.38×104
Coating-II 130.61 168.34 −1.32 2.20×10−4 1.45×105
Coating-III 166.51 102.82 −1.24 1.04×10−5 2.40×106
Tab.3  Electrochemical parameters of the polarization curves
Fig.8  (a) pH value, (b) HEV and (c) HER as a function of the immersion time in 3.5 wt.% NaCl for 78 h.
Fig.9  SEM images of (a)(b) the AZ31 substrate and (c)(d)(e)(f)(g)(h) coatings. Results of (i) EDS, (j) XRD and (k) FTIR after immersion in 3.5 wt.% NaCl solution for 78 h.
Fig.10  Nanoscratch test results of (a) coating I, (b) coating II, and (c) coating III.
Fig.11  SEM images of coating I with different times and magnifications: (a)(b) 2 min; (c)(d) 10 min; (e)(f) 20 min; (g)(h) 30 min.
Fig.12  EDS results of coatings for (a) different preparation time, (b) different immersion time in 3.5 wt.% NaCl, and (c) point scanning in Fig. 11(b).
Fig.13  Schematic representation of the Fe coating formation.
Fig.14  SEM images of coating I with different immersion time in 3.5 wt.% NaCl solution: (a)(b) 20 min; (c)(d) 1 h; (e)(f) 20 h; (g)(h) 80 h.
Fig.15  Schematic diagram of the coating accelerating the AZ31 alloy degradation.
1 Y J Lu, L L Tan, H L Xiang, et al.. Fabrication and characterization of Ca–Mg–P containing coating on pure magnesium. Journal of Materials Science & Technology, 2012, 28(7): 636–641
https://doi.org/10.1016/S1005-0302(12)60109-1
2 W H Yao, W Liang, G S Huang, et al.. Superhydrophobic coatings for corrosion protection of magnesium alloys. Journal of Materials Science & Technology, 2020, 52(1): 100–118
https://doi.org/10.1016/j.jmst.2020.02.055
3 C Y Li, X L Feng, X L Fan, et al.. Corrosion and wear resistance of micro-arc oxidation composite coatings on magnesium alloy AZ31 the influence of inclusions of carbon spheres. Advanced Engineering Materials, 2019, 21(9): 1900446
https://doi.org/10.1002/adem.201900446
4 M S Song, R C Zeng, Y F Ding, et al.. Recent advances in biodegradation controls over Mg alloys for bone fracture management: A review. Journal of Materials Science & Technology, 2019, 35(4): 535–544
https://doi.org/10.1016/j.jmst.2018.10.008
5 Y H Zou, J Wang, L Y Cui, et al.. Corrosion resistance and antibacterial activity of zinc-loaded montmorillonite coatings on biodegradable magnesium alloy AZ31. Acta Biomaterialia, 2019, 98(15): 196–214
https://doi.org/10.1016/j.actbio.2019.05.069 pmid: 31154057
6 E Kennedy, Shivappa, Sriraman, et al.. Influence of PEO coatings on mechanical and corrosion properties of Mg–7Y–1Zn alloy. Materials Today: Proceedings, 2020 (in press) doi:10.1016/j.matpr.2019.09.103
7 A Atrens, G L Song, M Liu, et al.. Review of recent developments in the field of magnesium corrosion. Advanced Engineering Materials, 2015, 17(4): 400–453
https://doi.org/10.1002/adem.201400434
8 K Luo, L Zhang, G Wu, et al.. Effect of Y and Gd content on the microstructure and mechanical properties of Mg–Y–RE alloys. Journal of Magnesium and Alloys, 2019, 7(2): 345–354
https://doi.org/10.1016/j.jma.2019.03.002
9 E Willbold, X Gu, D Albert, et al.. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. Acta Biomaterialia, 2015, 11: 554–562
https://doi.org/10.1016/j.actbio.2014.09.041 pmid: 25278442
10 H Hornberger, S Virtanen, A R Boccaccini. Biomedical coatings on magnesium alloys — A review. Acta Biomaterialia, 2012, 8(7): 2442–2455
https://doi.org/10.1016/j.actbio.2012.04.012 pmid: 22510401
11 Z Z Yin, W C Qi, R C Zeng, et al.. Advances in coatings on biodegradable magnesium alloys. Journal of Magnesium and Alloys, 2020, 8(1): 42–65
https://doi.org/10.1016/j.jma.2019.09.008
12 G Zhang, L Wu, A Tang, et al.. Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31. Corrosion Science, 2018, 139(15): 370–382
https://doi.org/10.1016/j.corsci.2018.05.010
13 L Y Cui, X H Fang, W Cao, et al.. In vitro corrosion resistance of a layer-by-layer assembled DNA coating on magnesium alloy. Applied Surface Science, 2018, 457(1): 49–58
https://doi.org/10.1016/j.apsusc.2018.06.240
14 C Ke, M S Song, R C Zeng, et al.. Interfacial study of the formation mechanism of corrosion resistant strontium phosphate coatings upon Mg–3Al–4.3Ca–0.1Mn. Corrosion Science, 2019, 151(1): 143–153
https://doi.org/10.1016/j.corsci.2019.02.024
15 Y L Kuo, K H Chang. Atmospheric pressure plasma enhanced chemical vapor deposition of SiOx films for improved corrosion resistant properties of AZ31 magnesium alloys. Surface and Coatings Technology, 2015, 283(15): 194–200
https://doi.org/10.1016/j.surfcoat.2015.11.004
16 Z Q Zhang, R C Zeng, W Yan, et al.. Corrosion resistance of one-step superhydrophobic polypropylene coating on magnesium hydroxide-pretreated magnesium alloy AZ31. Journal of Alloys and Compounds, 2020, 821(25): 153515
https://doi.org/10.1016/j.jallcom.2019.153515
17 L Y Li, L Y Cui, R C Zeng, et al.. Advances in functionalized polymer coatings on biodegradable magnesium alloys — A review. Acta Biomaterialia, 2018, 79(1): 23–36
https://doi.org/10.1016/j.actbio.2018.08.030 pmid: 30149212
18 J X Jia, G L Song, A Atrens. Influence of geometry on galvanic corrosion of AZ91D coupled to steel. Corrosion Science, 2006, 48(8): 2133–2153
https://doi.org/10.1016/j.corsci.2005.08.013
19 G L Song, B Johannesson, S Hapugoda, et al.. Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc. Corrosion Science, 2004, 46(4): 955–977
https://doi.org/10.1016/S0010-938X(03)00190-2
20 J Umeda, N Nakanishi, K Kondoh, et al.. Surface potential analysis on initial galvanic corrosion of Ti/Mg–Al dissimilar material. Materials Chemistry and Physics, 2016, 179(15): 5–9
https://doi.org/10.1016/j.matchemphys.2016.05.031
21 B Z Deng, G Z Yin, M H Li, et al.. Feature of fractures induced by hydrofracturing treatment using water and L-CO2 as fracturing fluids in laboratory experiments. Fuel, 2018, 226(15): 35–46
https://doi.org/10.1016/j.fuel.2018.03.162
22 X Dong, J Trembly, D Bayless. Techno-economic analysis of hydraulic fracking flowback and produced water treatment in supercritical water reactor. Energy, 2017, 133(15): 777–783
https://doi.org/10.1016/j.energy.2017.05.078
23 P Tan, H W Pang, R X Zhang, et al.. Experimental investigation into hydraulic fracture geometry and proppant migration characteristics for southeastern Sichuan deep shale reservoirs. Journal of Petroleum Science and Engineering, 2020, 184: 106517
https://doi.org/10.1016/j.petrol.2019.106517
24 Y Fei, R L Johnson, M Gonzalez, et al.. Experimental and numerical investigation into nano-stabilized foams in low permeability reservoir hydraulic fracturing applications. Fuel, 2018, 213(1): 133–143
https://doi.org/10.1016/j.fuel.2017.10.095
25 C Zhang, L Wu, G S Huang, et al.. Effects of Fe concentration on microstructure and corrosion of Mg–6Al–1Zn–xFe alloys for fracturing balls applications. Journal of Materials Science & Technology, 2019, 35(9): 2086–2098
https://doi.org/10.1016/j.jmst.2019.04.012
26 M Liu, P J Uggowitzer, A V Nagasekhar, et al.. Calculated phase diagrams and the corrosion of die-cast Mg–Al alloys. Corrosion Science, 2009, 51(3): 602–619
https://doi.org/10.1016/j.corsci.2008.12.015
27 Y Z Zhang, X Y Wang, Y F Kuang, et al.. Enhanced mechanical properties and degradation rate of Mg–3Zn–1Y based alloy by Cu addition for degradable fracturing ball applications. Materials Letters, 2017, 195(15): 194–197
https://doi.org/10.1016/j.matlet.2017.02.024
28 H Y Niu, K K Deng, K B Nie, et al.. Microstructure, mechanical properties and corrosion properties of Mg–4Zn–xNi alloys for degradable fracturing ball applications. Journal of Alloys and Compounds, 2019, 787: 1290–1300
https://doi.org/10.1016/j.jallcom.2019.02.089
29 S Cicek, A Karaca, I Torun, et al.. The relationship of surface roughness and wettability of 316L stainless steel implants with plastic deformation mechanisms. Materials Today: Proceedings, 2019, 7(1): 389–393
https://doi.org/10.1016/j.matpr.2018.11.100
30 C P Gupta. Role of iron (Fe) in body. IOSR Journal of Applied Chemistry, 2014, 7(11): 38–46
https://doi.org/10.9790/5736-071123846
31 W Q Zhou, D Y Shan, E H Han, et al.. Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy. Corrosion Science, 2008, 50(2): 329–337
https://doi.org/10.1016/j.corsci.2007.08.007
32 L Anicai, R Masi, M Santamaria, et al.. A photoelectrochemical investigation of conversion coatings on Mg substrates. Corrosion Science, 2005, 47(12): 2883–2900
https://doi.org/10.1016/j.corsci.2005.05.033
33 H P Duan, C W Yan, F H Wang. Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D. Electrochimica Acta, 2007, 52(11): 3785–3793
https://doi.org/10.1016/j.electacta.2006.10.066
34 L Y Cui, S D Gao, P P Li, et al.. Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31. Corrosion Science, 2017, 118: 84–95
https://doi.org/10.1016/j.corsci.2017.01.025
35 Y Wang, B H Ding, S Y Gao, et al.. In vitro corrosion of pure Mg in phosphate buffer solution — Influences of isoelectric point and molecular structure of amino acids. Materials Science and Engineering C, 2019, 105: 110042
https://doi.org/10.1016/j.msec.2019.110042 pmid: 31546440
36 S Y Jian, C Y Yang, J K Chang. Robust corrosion resistance and self-healing characteristics of a novel Ce/Mn conversion coatings on EV31 magnesium alloys. Applied Surface Science, 2020, 510(30): 145385
https://doi.org/10.1016/j.apsusc.2020.145385
37 R C Zeng, Z G Liu, F Zhang, et al.. Corrosion resistance of in-situ Mg–Al hydrotalcite conversion film on AZ31 magnesium alloy by one-step formation. Transactions of Nonferrous Metals Society of China, 2015, 25(6): 1917–1925
https://doi.org/10.1016/S1003-6326(15)63799-2
38 H Teng, C J Yang, J F Lin, et al.. A simple method to functionalize the surface of plasma electrolytic oxidation produced TiO2 coatings for growing hydroxyapatite. Electrochimica Acta, 2016, 193(1): 216–224
https://doi.org/10.1016/j.electacta.2016.02.060
39 H F Zhang, M Liu, H S Fan, et al.. An efficient method to synthesize carbonated nano hydroxyapatite assisted by poly(ethylene glycol). Materials Letters, 2012, 75: 26–28
https://doi.org/10.1016/j.matlet.2012.01.110
40 R C Zeng, X T Li, L J Liu, et al.. In vitro degradation of pure Mg for esophageal stent in artificial saliva. Journal of Materials Science & Technology, 2016, 32(5): 437–444
https://doi.org/10.1016/j.jmst.2016.02.007
41 J Jayaraj, K R Rajesh, S A Raj, et al.. Investigation on the corrosion behavior of lanthanum phosphate coatings on AZ31 Mg alloy obtained through chemical conversion technique. Journal of Alloys and Compounds, 2019, 784(5): 1162–1174
https://doi.org/10.1016/j.jallcom.2019.01.121
42 L Zhao, Q Liu, R Gao, et al.. One-step method for the fabrication of superhydrophobic surface on magnesium alloy and its corrosion protection, antifouling performance. Corrosion Science, 2014, 80: 177–183
https://doi.org/10.1016/j.corsci.2013.11.026
43 T S Lim, H S Ryu, S H Hong. Electrochemical corrosion properties of CeO2-containing coatings on AZ31 magnesium alloys prepared by plasma electrolytic oxidation. Corrosion Science, 2012, 62: 104–111
https://doi.org/10.1016/j.corsci.2012.04.043
44 Y Liu, X M Yin, J J Zhang, et al.. An electro-deposition process for fabrication of biomimetic super-hydrophobic surface and its corrosion resistance on magnesium alloy. Electrochimica Acta, 2014, 125: 395–403
https://doi.org/10.1016/j.electacta.2014.01.135
45 J R Li, Q T Jiang, H Y Sun, et al.. Effect of heat treatment on corrosion behavior of AZ63 magnesium alloy in 3.5 wt.% sodium chloride solution. Corrosion Science, 2016, 111: 288–301
https://doi.org/10.1016/j.corsci.2016.05.019
46 L Y Cui, S C Cheng, L X Liang, et al.. In vitro corrosion resistance of layer-by-layer assembled polyacrylic acid multilayers induced Ca–P coating on magnesium alloy AZ31. Bioactive Materials, 2020, 5(1): 153–163
https://doi.org/10.1016/j.bioactmat.2020.02.001 pmid: 32083229
47 T Zhang, Y W Shao, G Z Meng, et al.. Corrosion of hot extrusion AZ91 magnesium alloy: I — Relation between the microstructure and corrosion behavior. Corrosion Science, 2011, 53(5): 1960–1968
https://doi.org/10.1016/j.corsci.2011.02.015
48 Y T Guo, S Q Jia, L Qiao, et al.. Enhanced corrosion resistance and biocompatibility of polydopamine/dicalcium phosphate dihydrate/collagen composite coating on magnesium alloy for orthopedic applications. Journal of Alloys and Compounds, 2020, 817(15): 152782
https://doi.org/10.1016/j.jallcom.2019.152782
49 Y Zhao, X Chen, S Li, et al.. Corrosion resistance and drug release profile of gentamicin-loaded polyelectrolyte multilayers on magnesium alloys: Effects of heat treatment. Journal of Colloid and Interface Science, 2019, 547(1): 309–317
https://doi.org/10.1016/j.jcis.2019.04.017 pmid: 30965229
50 X Jiang, R G Guo, S Q Jiang. Microstructure and corrosion resistance of Ce–V conversion coating on AZ31 magnesium alloy. Applied Surface Science, 2015, 341(30): 166–174
https://doi.org/10.1016/j.apsusc.2015.02.195
51 Y L Lee, Y R Chu, W C Li, et al.. Effect of permanganate concentration on the formation and properties of phosphate/permanganate conversion coating on AZ31 magnesium alloy. Corrosion Science, 2013, 70: 74–81
https://doi.org/10.1016/j.corsci.2013.01.014
52 X W Yang, G X Wang, G G Dong, et al.. Rare earth conversion coating on Mg–8.5Li alloys. Journal of Alloys and Compounds, 2009, 487(1–2): 64–68
https://doi.org/10.1016/j.jallcom.2009.07.113
53 P Ji, R Y Long, L G Hou, et al.. Study on hydrophobicity and wettability transition of Ni–Cu–SiC coating on Mg–Li alloy. Surface and Coatings Technology, 2018, 350(25): 428–435
https://doi.org/10.1016/j.surfcoat.2018.07.038
54 L Wu, X X Ding, Z C Zheng, et al.. Doublely-doped Mg–Al–Ce–V2O74–LDH composite film on magnesium alloy AZ31 for anticorrosion. Journal of Materials Science & Technology, 2019 (in press)
https://doi.org/10.1016/j.jmst.2019.09.031
55 P Amaravathy, T S S Kumar. Bioactivity enhancement by Sr doped Zn–Ca–P coatings on biomedical magnesium alloy. Journal of Magnesium and Alloys, 2019, 7(4): 584–596
https://doi.org/10.1016/j.jma.2019.05.014
[1] Xiang SUN, Qing-Song YAO, Yu-Chao LI, Fen ZHANG, Rong-Chang ZENG, Yu-Hong ZOU, Shuo-Qi LI. Biocorrosion resistance and biocompatibility of Mg--Al layered double hydroxide/poly(L-lactic acid) hybrid coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(4): 426-441.
[2] Lei CHANG, Xiangrui LI, Xuhui TANG, He ZHANG, Ding HE, Yujun WANG, Jiayin ZHAO, Jingan LI, Jun WANG, Shijie ZHU, Liguo WANG, Shaokang GUAN. Micro-patterned hydroxyapatite/silk fibroin coatings on Mg--Zn--Y--Nd--Zr alloys for better corrosion resistance and cell behavior guidance[J]. Front. Mater. Sci., 2020, 14(4): 413-425.
[3] Zai-Meng QIU, Fen ZHANG, Jun-Tong CHU, Yu-Chao LI, Liang SONG. Corrosion resistance and hydrophobicity of myristic acid modified Mg--Al LDH/Mg(OH)2 steam coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(1): 96-107.
[4] Mengke PENG, Fenyan HU, Minting DU, Bingjie MAI, Shurong ZHENG, Peng LIU, Changhao WANG, Yashao CHEN. Hydrothermal growth of hydroxyapatite and ZnO bilayered nanoarrays on magnesium alloy surface with antibacterial activities[J]. Front. Mater. Sci., 2020, 14(1): 14-23.
[5] Xiao-Jing JI, Qiang CHENG, Jing WANG, Yan-Bin ZHAO, Zhuang-Zhuang HAN, Fen ZHANG, Shuo-Qi LI, Rong-Chang ZENG, Zhen-Lin WANG. Corrosion resistance and antibacterial effects of hydroxyapatite coating induced by polyacrylic acid and gentamicin sulfate on magnesium alloy[J]. Front. Mater. Sci., 2019, 13(1): 87-98.
[6] Lian GUO, Fen ZHANG, Jun-Cai LU, Rong-Chang ZENG, Shuo-Qi LI, Liang SONG, Jian-Min ZENG. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys[J]. Front. Mater. Sci., 2018, 12(2): 198-206.
[7] Ling-Yu LI, Bin LIU, Rong-Chang ZENG, Shuo-Qi LI, Fen ZHANG, Yu-Hong ZOU, Hongwei (George) JIANG, Xiao-Bo CHEN, Shao-Kang GUAN, Qing-Yun LIU. In vitro corrosion of magnesium alloy AZ31 --- a synergetic influence of glucose and Tris[J]. Front. Mater. Sci., 2018, 12(2): 184-197.
[8] Feng LI, Yang LIU, Xu-Bo LI. Dynamic recrystallization behavior of AZ31 magnesium alloy processed by alternate forward extrusion[J]. Front. Mater. Sci., 2017, 11(3): 296-305.
[9] Tao JIN,Fan-mei KONG,Rui-qin BAI,Ru-liang ZHANG. Anti-corrosion mechanism of epoxy-resin and different content Fe2O3 coatings on magnesium alloy[J]. Front. Mater. Sci., 2016, 10(4): 367-374.
[10] Li-Da HOU,Zhen LI,Yu PAN,MuhammadIqbal SABIR,Yu-Feng ZHENG,Li LI. A review on biodegradable materials for cardiovascular stent application[J]. Front. Mater. Sci., 2016, 10(3): 238-259.
[11] Yu-Hong ZOU,Rong-Chang ZENG,Qing-Zhao WANG,Li-Jun LIU,Qian-Qian XU,Chuang WANG,Zhiwei LIU. Blood compatibility of zinc–calcium phosphate conversion coating on Mg–1.33Li–0.6Ca alloy[J]. Front. Mater. Sci., 2016, 10(3): 281-289.
[12] Lan-Yue CUI,Rong-Chang ZENG,Xiao-Xiao ZHU,Ting-Ting PANG,Shuo-Qi LI,Fen ZHANG. Corrosion resistance of biodegradable polymeric layer-by-layer coatings on magnesium alloy AZ31[J]. Front. Mater. Sci., 2016, 10(2): 134-146.
[13] Xiao-Li ZHANG,Shan-Hu BAO,Yun-Chuan XIN,Xun CAO,Ping JIN. Optical switching properties of Pd--Ni thin-film top-capped switchable mirrors[J]. Front. Mater. Sci., 2015, 9(3): 227-233.
[14] Rong-Chang ZENG,Ke JIANG,Shuo-Qi LI,Fen ZHANG,Hong-Zhi CUI,En-Hou HAN. Mechanical and corrosion properties of Al/Ti film on magnesium alloy AZ31B[J]. Front. Mater. Sci., 2015, 9(1): 66-76.
[15] Rong-Chang ZENG,Wei-Chen QI,Ying-Wei SONG,Qin-Kun HE,Hong-Zhi CUI,En-Hou HAN. In vitro degradation of MAO/PLA coating on Mg--1.21Li--1.12Ca--1.0Y alloy[J]. Front. Mater. Sci., 2014, 8(4): 343-353.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed