Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2014, Vol. 8 Issue (3) : 307-312    https://doi.org/10.1007/s11706-014-0250-z
RESEARCH ARTICLE
One-step electrochemical fabrication of bilayered MgO/polymer coating on magnesium alloy
Jun LIANG(),Ren-Hui ZHANG,Zhen-Jun PENG,Bai-Xing LIU
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
 Download: PDF(670 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This research demonstrates a novel one-step electrochemical method to fabricate thick bilayer coatings on magnesium alloy in acid phosphate electrolyte containing aniline monomer and styrene-acrylic emulsion (SAE) with pulsed DC voltage. The morphologies, XRD and FTIR results show that the bilayer coating consists of an inner oxide layer and an outer polyaniline (PANI)/SAE composite layer. It is believed that the bilayered structure achieved results from a hybrid process combining electropolymerization (EPM) of aniline, electrophoretic deposition (EPD) of SAE and plasma electrolyte oxidation (PEO) of magnesium alloy substrate. Electrochemical corrosion tests indicate that the bilayer coating can provide superior corrosion protection to the magnesium alloy substrate in 3.5 wt.% NaCl solution.

Keywords magnesium alloy      bilayer coating      EPD      PEO      corrosion resistance     
Corresponding Author(s): Jun LIANG   
Issue Date: 12 September 2014
 Cite this article:   
Jun LIANG,Ren-Hui ZHANG,Zhen-Jun PENG, et al. One-step electrochemical fabrication of bilayered MgO/polymer coating on magnesium alloy[J]. Front. Mater. Sci., 2014, 8(3): 307-312.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-014-0250-z
https://academic.hep.com.cn/foms/EN/Y2014/V8/I3/307
Fig.1  (a) Cross-section and (b) surface morphologies of the coating formed in an acid phosphate electrolyte with addition of aniline monomer and SAE.
Fig.2  XRD patterns of the bilayer coating: (a) outer layer; (b) inner layer.
Fig.3  FTIR spectrum of the outer surface of the bilayer coating.
Fig.4  Schematic diagram showing the formation of MgO/polymer bilayer coating on magnesium alloy substrate in acidic phosphate electrolyte with addition of aniline monomer and SAE.
Fig.5  Potentiodynamic polarization curves of bare and bilayer coated AZ91D magnesium alloy in 3.5 wt.% NaCl solution.
SpecimenEcorr /mV vs. Ag/AgClicorr /(mA·cm-2)
Bare Mg alloy-14744.16×10-2
Bilayer coated Mg alloy-13422.03×10-4
Tab.1  Electrochemical data of bare and bilayer coated AZ91D magnesium alloy from polarization tests in 3.5 wt.% NaCl solution
1 Eliezer D, Aghion E, Froes F H. Magnesium science, technology and applications. Advanced Performance Materials, 1998, 5(3): 201–212
2 Mordike B L, Ebert T. Magnesium: properties – applications – potential. Materials Science and Engineering A, 2001, 302(1): 37–45
3 Song G L, Atrens A. Corrosion mechanisms of magnesium alloys. Advanced Engineering Materials, 1999, 1(1): 11–33
4 Kainer K U, Srinivasan P B, Blawert C, . Corrosion of Magnesium and Its Alloys. Oxford: Elsevier, 2010
5 Gray J E, Luan B. Protective coatings on magnesium and its alloys — a critical review. Journal of Alloys and Compounds, 2002, 336(1–2): 88–113
6 Singh R. Surface modification for mitigation of corrosion/localised corrosion of magnesium alloys. Surface Engineering, 2007, 23(5): 319–323
7 Blawert C, Dietzel W, Ghali E, . Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments. Advanced Engineering Materials, 2006, 8(6): 511–533
8 Walsh F C, Low C T J, Wood R J K, . Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys. Transactions of the Institute of Metal Finishing, 2009, 87(3): 122–135
9 Song G L. An irreversible dipping sealing technique for anodized ZE41 Mg alloy. Surface and Coatings Technology, 2009, 203(23): 3618–3625
10 Duan H P, Du K Q, Yan C W, . Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D. Electrochimica Acta, 2006, 51(14): 2898–2908
11 Srinivasan P B, Scharnagl N, Blawert C, . Enhanced corrosion protection of AZ31 magnesium alloy by duplex plasma electrolytic oxidation and polymer coatings. Surface Engineering, 2010, 26(5): 354–360
12 Guo X H, An M Z. Experimental study of electrochemical corrosion behaviour of bilayer on AZ31B Mg alloy. Corrosion Science, 2010, 52(12): 4017–4027
13 Lamaka S V, Knornschild G, Snihirova D V, . Complex anticorrosion coating for ZK30 magnesium alloy. Electrochimica Acta, 2009, 55(1): 131–141
14 Bestetti M, Cavallotti P L, Da Forno A, . Anodic oxidation and powder coating for corrosion protection of AM60B magnesium alloys. Transactions of the IMF, 2007, 85(6): 316–319
15 Mandelli A, Bestetti M, Da Forno A, . A composite coating for corrosion protection of AM60B magnesium alloy. Surface and Coatings Technology, 2011, 205(19): 4459–4465
16 Bai K F, Zhang Y, Fu Z Y, . Fabrication of chitosan/magnesium phosphate composite coating and the in vitro degradation properties of coated magnesium alloy. Materials Letters, 2012, 73: 59–61
17 Wu C J, Wen Z H, Dai C S, . Fabrication of calcium phosphate/chitosan coatings on AZ91D magnesium alloy with a novel method. Surface and Coatings Technology, 2010, 204(20): 3336–3347
18 Jiang Y F, Yang H S, Bao Y F, . Characterization of composite coatings produced by plasma electrolytic oxidation plus cathodic electrophoretic deposition on magnesium alloy. Advanced Materials Research, 2011, 146–147: 1126–1131
19 Shang W, Chen B Z, Shi X C, . Electrochemical corrosion behavior of composite MAO/sol–gel coatings on magnesium alloy AZ91D using combined micro-arc oxidation and sol–gel technique. Journal of Alloys and Compounds, 2009, 474(1–2): 541–545
20 Wang J W, Tang J W, He Y D. Top coating of low-molecular weight polymer MALPB used for enhanced protection on anodized AZ31B Mg alloys. Journal of Coatings Technology and Research, 2010, 7(6): 737–746
21 Sathiyanarayanan S, Maruthan K, Muthukrishnan S, . High performance polyaniline containing coating system for wet surfaces. Progress in Organic Coatings, 2009, 66(2): 113–117
22 Yuan D S, Zhou T X, Zhou S L, . Nitrogen-enriched carbon nanowires from the direct carbonization of polyaniline nanowires and its electrochemical properties. Electrochemistry Communications, 2011, 13(3): 242–246
23 Bhadra S, Khastgir D, Singha N K, . Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science, 2009, 34(8): 783–810
24 Zhang R H, Liang J, Wang Q. Preparation and characterization of graphite-dispersed styrene-acrylic emulsion composite coating on magnesium alloy. Applied Surface Science, 2012, 258(10): 4360–4364
25 Sathiyanarayanan S, Muthkrishnan S, Venkatachari G. Corrosion protection of steel by polyaniline blended coating. Electrochimica Acta, 2006, 51(28): 6313–6319
26 Conroy K G, Breslin C B. The electrochemical deposition of polyaniline at pure aluminium: electrochemical activity and corrosion protection properties. Electrochimica Acta, 2003, 48(6): 721–732
27 Shao Y W, Huang H, Zhang T, . Corrosion protection of Mg–5Li alloy with epoxy coatings containing polyaniline. Corrosion Science, 2009, 51(12): 2906–2915
[1] Xiang SUN, Qing-Song YAO, Yu-Chao LI, Fen ZHANG, Rong-Chang ZENG, Yu-Hong ZOU, Shuo-Qi LI. Biocorrosion resistance and biocompatibility of Mg--Al layered double hydroxide/poly(L-lactic acid) hybrid coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(4): 426-441.
[2] Lei CHANG, Xiangrui LI, Xuhui TANG, He ZHANG, Ding HE, Yujun WANG, Jiayin ZHAO, Jingan LI, Jun WANG, Shijie ZHU, Liguo WANG, Shaokang GUAN. Micro-patterned hydroxyapatite/silk fibroin coatings on Mg--Zn--Y--Nd--Zr alloys for better corrosion resistance and cell behavior guidance[J]. Front. Mater. Sci., 2020, 14(4): 413-425.
[3] Zheng-Zheng YIN, Wei HUANG, Xiang SONG, Qiang ZHANG, Rong-Chang ZENG. Self-catalytic degradation of iron-bearing chemical conversion coating on magnesium alloys ---- Influence of Fe content[J]. Front. Mater. Sci., 2020, 14(3): 296-313.
[4] Zai-Meng QIU, Fen ZHANG, Jun-Tong CHU, Yu-Chao LI, Liang SONG. Corrosion resistance and hydrophobicity of myristic acid modified Mg--Al LDH/Mg(OH)2 steam coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(1): 96-107.
[5] Mengke PENG, Fenyan HU, Minting DU, Bingjie MAI, Shurong ZHENG, Peng LIU, Changhao WANG, Yashao CHEN. Hydrothermal growth of hydroxyapatite and ZnO bilayered nanoarrays on magnesium alloy surface with antibacterial activities[J]. Front. Mater. Sci., 2020, 14(1): 14-23.
[6] Wei WU, Fen ZHANG, Yu-Chao LI, Yong-Feng ZHOU, Qing-Song YAO, Liang SONG, Rong-Chang ZENG, Sie Chin TJONG, Dong-Chu CHEN. Corrosion resistance of a silane/ceria modified Mg--Al-layered double hydroxide on AA5005 aluminum alloy[J]. Front. Mater. Sci., 2019, 13(4): 420-430.
[7] Xiao-Jing JI, Qiang CHENG, Jing WANG, Yan-Bin ZHAO, Zhuang-Zhuang HAN, Fen ZHANG, Shuo-Qi LI, Rong-Chang ZENG, Zhen-Lin WANG. Corrosion resistance and antibacterial effects of hydroxyapatite coating induced by polyacrylic acid and gentamicin sulfate on magnesium alloy[J]. Front. Mater. Sci., 2019, 13(1): 87-98.
[8] Lian GUO, Fen ZHANG, Jun-Cai LU, Rong-Chang ZENG, Shuo-Qi LI, Liang SONG, Jian-Min ZENG. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys[J]. Front. Mater. Sci., 2018, 12(2): 198-206.
[9] Ling-Yu LI, Bin LIU, Rong-Chang ZENG, Shuo-Qi LI, Fen ZHANG, Yu-Hong ZOU, Hongwei (George) JIANG, Xiao-Bo CHEN, Shao-Kang GUAN, Qing-Yun LIU. In vitro corrosion of magnesium alloy AZ31 --- a synergetic influence of glucose and Tris[J]. Front. Mater. Sci., 2018, 12(2): 184-197.
[10] Feng LI, Yang LIU, Xu-Bo LI. Dynamic recrystallization behavior of AZ31 magnesium alloy processed by alternate forward extrusion[J]. Front. Mater. Sci., 2017, 11(3): 296-305.
[11] Tao JIN,Fan-mei KONG,Rui-qin BAI,Ru-liang ZHANG. Anti-corrosion mechanism of epoxy-resin and different content Fe2O3 coatings on magnesium alloy[J]. Front. Mater. Sci., 2016, 10(4): 367-374.
[12] Li-Da HOU,Zhen LI,Yu PAN,MuhammadIqbal SABIR,Yu-Feng ZHENG,Li LI. A review on biodegradable materials for cardiovascular stent application[J]. Front. Mater. Sci., 2016, 10(3): 238-259.
[13] Yu-Hong ZOU,Rong-Chang ZENG,Qing-Zhao WANG,Li-Jun LIU,Qian-Qian XU,Chuang WANG,Zhiwei LIU. Blood compatibility of zinc–calcium phosphate conversion coating on Mg–1.33Li–0.6Ca alloy[J]. Front. Mater. Sci., 2016, 10(3): 281-289.
[14] Lan-Yue CUI,Rong-Chang ZENG,Xiao-Xiao ZHU,Ting-Ting PANG,Shuo-Qi LI,Fen ZHANG. Corrosion resistance of biodegradable polymeric layer-by-layer coatings on magnesium alloy AZ31[J]. Front. Mater. Sci., 2016, 10(2): 134-146.
[15] Yichi LIU,Debao LIU,Chen YOU,Minfang CHEN. Effects of grain size on the corrosion resistance of pure magnesium by cooling rate-controlled solidification[J]. Front. Mater. Sci., 2015, 9(3): 247-253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed