Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2019, Vol. 13 Issue (1) : 1-22    https://doi.org/10.1007/s11706-019-0453-4
REVIEW ARTICLE
S-, N- and C-doped ZnO as semiconductor photocatalysts: A review
Vijaya KUMARI1, Anuj MITTAL1, Jitender JINDAL2, Suprabha YADAV1, Naveen KUMAR1()
1. Department of Chemistry, Maharshi Dayanand University, Rohtak, India
2. Department of Chemistry, R.P.S. Degree College, Mohindergarh, India
 Download: PDF(1650 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the past few decades, many novel non-metal doped ZnO materials have developed hasty interest due to their adaptable properties such as low recombination rate and high activity under the solar light exposure. In this article, we compiled recent research advances in non-metal (S, N, C) doped ZnO, emphasizing on the related mechanism of catalysis and the effect of non-metals on structural, morphological, optical and photocatalytic characteristics of ZnO. This review will enhance the knowledge about the advancement in ZnO and will help in synthesizing new ZnO-based materials with modified structural and photocatalytic properties.

Keywords degradation      recombination      mechanism      photocatalyst      pollutant     
Corresponding Author(s): Naveen KUMAR   
Online First Date: 22 February 2019    Issue Date: 07 March 2019
 Cite this article:   
Vijaya KUMARI,Anuj MITTAL,Jitender JINDAL, et al. S-, N- and C-doped ZnO as semiconductor photocatalysts: A review[J]. Front. Mater. Sci., 2019, 13(1): 1-22.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-019-0453-4
https://academic.hep.com.cn/foms/EN/Y2019/V13/I1/1
Fig.1  Schematic illustrating the degradation mechanism of the semiconductor-assisted photocatalytic process.
Fig.2  FESEM images of as-prepared ZnO samples synthesized with different compositions of the reaction mixture: (a)(b) Zn2+/NaOH 1:2, EA/H2O 1:6; (c)(d) Zn2+/NaOH 1:6, EA/H2O 1:6; (e)(f) Zn2+/NaOH 1:12, EA/H2O 1:6; (g)(h) Zn2+/NaOH 1:12, EA/H2O 6:1. Reproduced from Ref. [63] with permission of American Chemical Society, Copyright 2011.
Fig.3  Layout of the non-metal and metal ions co-doped ZnO for the photodegradation.
Fig.4  XPS spectra of (a) Zn 2p3/2 and (b) O 1s for ZnS, ZnO, and ZnOxS1−x. Reproduced from Ref. [55] with permission of Elsevier, Copyright 2007.
Synthesis technique Raw materials Pollutant Morphology and size Band gap/eV Ref.
Vapor phase evaporation ZnO, S powder nanonails (70 nm), L = 1 µm, nanowires (50 nm), L = 10 µm 2.52–3.37 [67]
Mechanochemical Zn(Ac)2·2H2O, NH2CSNH2 resorcinol [69]
One step and green method Zn(Ac)2, S powder microspheres (41–139 nm) 3.37 [75]
Sol–gel ZnCl2, NH2CSNH2 Congo red, azo dye nanorod (120 nm) 2.75–3.18 [76]
Chemical bath deposition Zn(en)3SO4, NH2CSNH2 polycrystalline [80]
Hydrothermal Zn(Ac)2·2H2O, Zn(NO3)2 NH2CSNH2 MB nanorods (200 nm) with hexagonal cross section 3.2 [86]
Hydrothermal Zn(Ac)2·2H2O, Zn(NO3)2, NH2CSNH2 nanowires and nanostars with hexagon cross-section 3.37 [92]
Tab.1  Summary of synthesis techniques, raw materials, morphologies and applications of ZnO/S [67,69,7576,80,86,92]
Fig.5  Low-temperature PL spectra measured at 10 K of S-doped ZnO nanostructures and pure ZnO nanowires: (a) full spectra; (b)(c) UV region. Reproduced from Ref. [67] with permission of American Chemical Society, Copyright 2005.
Fig.6  Schematic energy level diagram of N-doped ZnO for photodegradation.
Method Sources Synthesis condition Morphology and size Pollutant and efficiency Band gap/eV Ref.
Plasma nitriding method ZnSO4, NH4HCO3, AgNO3 stirring at 20 °C (2 h), calcination at 400 °C (4 h) spherical particles (30–50 nm) MO (100%) [100]
Citrate precursor method Zn(NO3)2·6H2O, C6H8O7·H2O, NH2CONH2 calcination at 150 °C (2 h) and 850 °C (4 h) spherical size varying with the N content RhB 3.23–3.37 [111]
Chemical bath deposition Zn(Ac)2·2H2O, Cu(Ac)2·2H2O, NH4(Ac)2 stirring at 80 °C (2 h) hexagonal particles 3.19–3.37 [124]
Heat treatment method Zn(NO3)2·6H2O, ZnO, C2H5OH calcination at 300, 350, 400 °C (3 h) 32.9–50.8 nm at different temperatures (300–400 °C) K2Cr2O7 (38.9%), MO (73.5%) 3.2 [125]
Solvothermal method ZnO, HNO3, C2H5OH 140 °C (12 h) nanorod and nanosphere R6G (81.6%) 3.13–3.17 [126]
Self assembly combustion technique Zn(NO3)2·6H2O, NH2CONH2, C6H8O7 with different molar ratios hexagonal nanoflake (50–200 nm), spherical nanoparticles (30–50 nm) 3.27 [128]
Hydrothermal method ZnO, NH4OH 150 °C (24 h) hexagonal prism & pyramid, spherical particles (200–400 nm) RhB (97%)
MB (99%)
3.2–3.3 [127]
Tab.2  List of synthesis methods, sources, conditions, morphologies, applications and band gaps of ZnO/N [100,111,124128]
Fig.7  PL spectra of Cu–N codoped ZnO thin films with different Cu concentrations. Reproduced from Ref. [124] with permission of Elsevier, Copyright 2011.
Method Sources Synthesis conditions Morphology and degradation efficacy Band gap/eV Ref.
Chemical deposition ZnCl2, H3PO4, graphite flakes, HCl calcination at 400 °C (2 h) flower on sheets, MB (98.1%) 3.37 [21]
Co-precipitation Zn(Ac)2·2H2O, GO heated at 80 °C sandwich structure (5–14 nm), MB (80%) 3.26–3.31 [43]
Carbothermal reduction ZnSO4·7H2O, activated carbon stir 3 h at 80 °C, calcination at 400 °C (2 h) brilliant blue K-3R (92%) 3.20 [47]
Hydrothermal zinc gluconate, NaOH 200 °C (2 h), calcination at 400 °C irregular porous particle (3 µm), Rh B 3.20–3.31 [171]
Hydrothermal Zn(Ac)2·6H2O, CTAB 150 °C (5 h), calcination at 500 °C, 700 °C spherical (2 µm), degrade ethanol [179]
Hydrothermal Zn(Ac)2·2H2O, graphite, CH3COOH pH= 12–13, 160 °C (1 h), calcination at 400 °C (7 h) bisphenol A (100%) 3.25–3.31 [183]
Hydrothermal ZnCl2, GO 160 °C (10 h) Rh B (92.9%) 3.20 [172]
Reflux Zn(NO3)2·6H2O, MWCNT ultrasonication (40 min), reflux at 197 °C (24 h) 18–80 nm, degrades MB (98%) 3.31 [184]
Tab.3  Summary of methods, sources, morphologies and band gaps of ZnO/C [21,43,47,171172,179,183184]
1 MSamadi, M Zirak, ANaseri, et al.. Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films, 2016, 605: 2–19
https://doi.org/10.1016/j.tsf.2015.12.064
2 JXiao, Y Xie, HCao. Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. Chemosphere, 2015, 121: 1–17
https://doi.org/10.1016/j.chemosphere.2014.10.072 pmid: 25479808
3 C CWang, J R Li, X L Lv, et al.. Photocatalytic organic pollutants degradation in metal–organic frameworks. Energy & Environmental Science, 2014, 7(9): 2831–2867
https://doi.org/10.1039/C4EE01299B
4 SQadri, A Ganoe, YHaik. Removal and recovery of acridine orange from solutions by use of magnetic nanoparticles. Journal of Hazardous Materials, 2009, 169(1–3): 318–323
https://doi.org/10.1016/j.jhazmat.2009.03.103 pmid: 19406571
5 GPanthi, M Park, H YKim, et al.. Electrospun ZnO hybrid nanofibers for photodegradation of wastewater containing organic dyes: A review. Journal of Industrial and Engineering Chemistry, 2015, 21: 26–35
https://doi.org/10.1016/j.jiec.2014.03.044
6 TRobinson, B Chandran, PNigam. Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water Research, 2002, 36(11): 2824–2830
https://doi.org/10.1016/S0043-1354(01)00521-8 pmid: 12146870
7 LWang, J Zhang, RZhao, et al.. Adsorption of basic dyes on activated carbon prepared from Polygonum orientale Linn: Equilibrium, kinetic and thermodynamic studies. Desalination, 2010, 254(1–3): 68–74
https://doi.org/10.1016/j.desal.2009.12.012
8 SVanhulle, M Trovaslet, EEnaud, et al.. Decolorization, cytotoxicity, and genotoxicity reduction during a combined ozonation/fungal treatment of dye-contaminated wastewater. Environmental Science & Technology, 2008, 42(2): 584–589
https://doi.org/10.1021/es071300k pmid: 18284166
9 E KDafnopatidou, G PGallios, E GTsatsaroni, et al.. Reactive dyestuffs removal from aqueous solutions by flotation, possibility of water reuse, and dyestuff degradation. Industrial & Engineering Chemistry Research, 2007, 46(7): 2125–2132
https://doi.org/10.1021/ie060993v
10 MPanizza, A Barbucci, RRicotti, et al.. Electrochemical degradation of methylene blue. Separation and Purification Technology, 2007, 54(3): 382–387
https://doi.org/10.1016/j.seppur.2006.10.010
11 A LAhmad, S W Puasa. Reactive dyes decolourization from an aqueous solution by combined coagulation/micellar-enhanced ultrafiltration process. Chemical Engineering Journal, 2007, 132(1–3): 257–265
https://doi.org/10.1016/j.cej.2007.01.005
12 MRiera-Torres, C Gutiérrez-Bouzán, MCrespi. Combination of coagulation–flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination, 2010, 252(1–3): 53–59
https://doi.org/10.1016/j.desal.2009.11.002
13 PRavichandran, M H Farzana, S Meenakshi. Sorption equilibrium and kinetic studies of Direct Yellow 12 using carbon prepared from bagasse, rice husk and textile waste cloth. Indian Journal of Chemical Technology, 2012, 19(2): 103–110
14 HSelcuk. Decolorization and detoxification of textile wastewater by ozonation and coagulation processes. Dyes and Pigments, 2005, 64(3): 217–222
https://doi.org/10.1016/j.dyepig.2004.03.020
15 DBeydoun, R Amal, GLow, et al.. Role of nanoparticles in photocatalysis. Journal of Nanoparticle Research, 1999, 1(4): 439–458
https://doi.org/10.1023/A:1010044830871
16 RAsahi, T Morikawa, TOhwaki, et al.. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269–271
https://doi.org/10.1126/science.1061051 pmid: 11452117
17 XChen, L Liu, P YYu, et al.. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331(6018): 746–750
https://doi.org/10.1126/science.1200448 pmid: 21252313
18 JChen, J Shi, XWang, et al.. Recent progress in the preparation and application of semiconductor/graphene composite photocatalysts. Chinese Journal of Catalysis, 2013, 34(4): 621–640
https://doi.org/10.1016/S1872-2067(12)60530-0
19 IArslan, I A Balcioglu, T Tuhkanen, et al.. H2O2/UV-C and Fe2+/H2O2/UV-C versus TiO2/UV-A treatment for reactive dye wastewater. Journal of Environmental Engineering, 2000, 126(10): 903–911
https://doi.org/10.1061/(ASCE)0733-9372(2000)126:10(903)
20 EForgacs, T Cserháti, GOros. Removal of synthetic dyes from wastewaters: A review. Environment International, 2004, 30(7): 953–971
https://doi.org/10.1016/j.envint.2004.02.001 pmid: 15196844
21 BLi, T Liu, YWang, et al.. ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance. Journal of Colloid and Interface Science, 2012, 377(1): 114–121
https://doi.org/10.1016/j.jcis.2012.03.060 pmid: 22498370
22 NVerma, S Yadav, BMarí, et al.. Synthesis and charcterization of coupled ZnO/SnO2 photocatalysts and their activity towards degradation of cibacron red dye. Transactions of the Indian Ceramic Society, 2018, 77(1): 1–7
https://doi.org/10.1080/0371750X.2017.1417059
23 GWilliams, P V Kamat. Graphene-semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir, 2009, 25(24): 13869–13873
https://doi.org/10.1021/la900905h pmid: 19453127
24 NKumar, N S Chauhan, A Mittal, et al.. TiO2 and its composites as promising biomaterials: a review. Biometals, 2018, 31(2): 147–159
https://doi.org/10.1007/s10534-018-0078-6 pmid: 29392447
25 HZhang, X Lv, YLi, et al.. P25-graphene composite as a high performance photocatalyst. ACS Nano, 2010, 4(1): 380–386
https://doi.org/10.1021/nn901221k pmid: 20041631
26 GNeri, A Bonavita, CMilone, et al.. Role of the Au oxidation state in the CO sensing mechanism of Au/iron oxide-based gas sensors. Sensors and Actuators B: Chemical, 2003, 93(1–3): 402–408
https://doi.org/10.1016/S0925-4005(03)00188-6
27 Y HNg, A Iwase, AKudo, et al.. Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. Journal of Physical Chemistry Letters, 2010, 1(17): 2607–2612
https://doi.org/10.1021/jz100978u
28 FLi, J Xu, XYu, et al.. One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles. Sensors and Actuators B: Chemical, 2002, 81(2–3): 165–169
https://doi.org/10.1016/S0925-4005(01)00947-9
29 XXiang, L Xie, ZLi, et al.. Ternary MgO/ZnO/In2O3 heterostructured photocatalysts derived from a layered precursor and visible-light-induced photocatalytic activity. Chemical Engineering Journal, 2013, 221: 222–229
https://doi.org/10.1016/j.cej.2013.02.030
30 N NIlkhechi, B K Kaleji. Temperature stability and photocatalytic activity of nanocrystalline cristobalite powders with Cu dopant. Silicon, 2017, 9(6): 943–948
https://doi.org/10.1007/s12633-015-9363-y
31 JHu, H Li, CHuang, et al.. Enhanced photocatalytic activity of Bi2O3 under visible light irradiation by Cu(II) clusters modification. Applied Catalysis B: Environmental, 2013, 142–143: 598–603
https://doi.org/10.1016/j.apcatb.2013.05.079
32 QWang, J Lian, QMa, et al.. Preparation of carbon spheres supported CdS photocatalyst for enhancement its photocatalytic H2 evolution. Catalysis Today, 2017, 281: 662–668
https://doi.org/10.1016/j.cattod.2016.05.013
33 S SZhou, S Q Liu. Photocatalytic reduction of CO2 based on a CeO2 photocatalyst loaded with imidazole fabricated N-doped graphene and Cu(II) as cocatalysts. Photochemical & Photobiological Sciences, 2017, 16(10): 1563–1569
https://doi.org/10.1039/C7PP00211D pmid: 28884177
34 FKiriakidou, D I Kondarides, X E Verykios. The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azo-dyes. Catalysis Today, 1999, 54(1): 119–130
https://doi.org/10.1016/S0920-5861(99)00174-1
35 J CYu, Y Xie, H YTang, et al.. Visible light-assisted bactericidal effect of metalphthalocyanine-sensitized titanium dioxide films. Journal of Photochemistry and Photobiology A Chemistry, 2003, 156(1–3): 235–241
https://doi.org/10.1016/S1010-6030(03)00008-X
36 HKisch, W Macyk. Visible-light photocatalysis by modified titania. ChemPhysChem, 2002, 3(5): 399–400
https://doi.org/10.1002/1439-7641(20020517)3:5<399::AID-CPHC399>3.0.CO;2-H pmid: 12465498
37 LWang, Y Wu, FChen, et al.. Photocatalytic enhancement of Mg-doped ZnO nanocrystals hybridized with reduced graphene oxide sheets. Progress in Natural Science: Materials International, 2014, 24(1): 6–12
https://doi.org/10.1016/j.pnsc.2014.01.002
38 SSakthivel, B Neppolian, M VShankar, et al.. Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Materials and Solar Cells, 2003, 77(1): 65–82
https://doi.org/10.1016/S0927-0248(02)00255-6
39 M HFarzana, S Meenakshi. Visible light-driven photoactivity of zinc oxide impregnated chitosan beads for the detoxification of textile dyes. Applied Catalysis A: General, 2015, 503: 124–134
https://doi.org/10.1016/j.apcata.2014.12.034
40 AAkyol, H C Yatmaz, M Bayramoglu. Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions. Applied Catalysis B: Environmental, 2004, 54(1): 19–24
https://doi.org/10.1016/j.apcatb.2004.05.021
41 J MLee, Y B Pyun, J Yi, et al.. ZnO nanorod–graphene hybrid architectures for multifunctional conductors. The Journal of Physical Chemistry C, 2009, 113(44): 19134–19138
https://doi.org/10.1021/jp9078713
42 XSi, Y Liu, XWu, et al.. The interaction between oxygen vacancies and doping atoms in ZnO. Materials & Design, 2015, 87: 969–973
https://doi.org/10.1016/j.matdes.2015.08.027
43 DFu, G Han, YChang, et al.. The synthesis and properties of ZnO–graphene nano hybrid for photodegradation of organic pollutant in water. Materials Chemistry and Physics, 2012, 132(2–3): 673–681
https://doi.org/10.1016/j.matchemphys.2011.11.085
44 K MLee, C W Lai, K S Ngai, et al.. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Research, 2016, 88: 428–448
https://doi.org/10.1016/j.watres.2015.09.045 pmid: 26519627
45 M AFox, M T Dulay. Heterogeneous photocatalysis. Chemical Reviews, 1993, 93(1): 341–357
https://doi.org/10.1021/cr00017a016
46 M ILitter. Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems. Applied Catalysis B: Environmental, 1999, 23(2–3): 89–114
https://doi.org/10.1016/S0926-3373(99)00069-7
47 HMa, J Han, YFu, et al.. Synthesis of visible light responsive ZnO–ZnS/C photocatalyst by simple carbothermal reduction. Applied Catalysis B: Environmental, 2011, 102(3–4): 417–423
https://doi.org/10.1016/j.apcatb.2010.12.014
48 HOsman, Z Su, XMa, et al.. Synthesis of ZnO/C nanocomposites with enhanced visible light photocatalytic activity. Ceramics International, 2016, 42(8): 10237–10241
https://doi.org/10.1016/j.ceramint.2016.03.147
49 OCarp, C L Huisman, A Reller. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 2004, 32(1–2): 33–177
https://doi.org/10.1016/j.progsolidstchem.2004.08.001
50 S SShinde, C H Bhosale, K Y Rajpure. Photocatalytic degradation of toluene using sprayed N-doped ZnO thin films in aqueous suspension. Journal of Photochemistry and Photobiology B: Biology, 2012, 113: 70–77
https://doi.org/10.1016/j.jphotobiol.2012.05.008 pmid: 22673013
51 L CChen, Y J Tu, Y S Wang, et al.. Characterization and photoreactivity of N-, S-, and C-doped ZnO under UV and visible light illumination. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 199(2–3): 170–178
https://doi.org/10.1016/j.jphotochem.2008.05.022
52 M HHabibi, A H Habibi. Nanostructure composite ZnFe2O4–FeFe2O4–ZnO immobilized on glass: Photocatalytic activity for degradation of an azo textile dye F3B. Journal of Industrial and Engineering Chemistry, 2014, 20(1): 68–73
https://doi.org/10.1016/j.jiec.2013.04.025
53 NModirshahla, A Hassani, M ABehnajady, et al.. Effect of operational parameters on decolorization of Acid Yellow 23 from wastewater by UV irradiation using ZnO and ZnO/SnO2 photocatalysts. Desalination, 2011, 271(1–3): 187–192
https://doi.org/10.1016/j.desal.2010.12.027
54 JNishio, M Tokumura, H TZnad, et al.. Photocatalytic decolorization of azo-dye with zinc oxide powder in an external UV light irradiation slurry photoreactor. Journal of Hazardous Materials, 2006, 138(1): 106–115
https://doi.org/10.1016/j.jhazmat.2006.05.039 pmid: 16806676
55 CKim, S J Doh, S G Lee, et al.. Visible-light absorptivity of a zincoxysulfide (ZnOxS1−x) composite semiconductor and its photocatalytic activities for degradation of organic pollutants under visible-light irradiation. Applied Catalysis A: General, 2007, 330: 127–133
https://doi.org/10.1016/j.apcata.2007.07.016
56 S KPanda, A Dev, SChaudhuri. Fabrication and luminescent properties of c-axis oriented ZnO–ZnS core–shell and ZnS nanorod arrays by sulfidation of aligned ZnO nanorod arrays. The Journal of Physical Chemistry C, 2007, 111(13): 5039–5043
https://doi.org/10.1021/jp068391c
57 M YLu, J Song, M PLu, et al.. ZnO–ZnS heterojunction and ZnS nanowire arrays for electricity generation. ACS Nano, 2009, 3(2): 357–362
https://doi.org/10.1021/nn800804r pmid: 19236072
58 FLi, X Liu, TKong, et al.. Conversion from ZnO nanospindles into ZnO/ZnS core/shell composites and ZnS microspindles. Crystal Research and Technology, 2009, 44(4): 402–408
https://doi.org/10.1002/crat.200800574
59 CYan, D Xue. Conversion of ZnO nanorod arrays into ZnO/ZnS nanocable and ZnS nanotube arrays via an in situ chemistry strategy. The Journal of Physical Chemistry B, 2006, 110(51): 25850–25855
https://doi.org/10.1021/jp0659296 pmid: 17181231
60 ADi Paola, L Palmisano, MDerrigo, et al.. Preparation and characterization of tungsten chalcogenide photocatalysts. The Journal of Physical Chemistry B, 1997, 101(6): 876–883
https://doi.org/10.1021/jp9623599
61 ADi Paola, M Addamo, LPalmisano. Mixed oxide/sulfide systems for photocatalysis. Research on Chemical Intermediates, 2003, 29(5): 467–475
https://doi.org/10.1163/156856703322149008
62 AKołodziejczak-Radzimska, TJesionowski. Zinc oxide—from synthesis to application: A review. Materials, 2014, 7(4): 2833–2881
https://doi.org/10.3390/ma7042833 pmid: 28788596
63 XWang, Q Zhang, QWan, et al.. Controllable ZnO architectures by ethanolamine-assisted hydrothermal reaction for enhanced photocatalytic activity. The Journal of Physical Chemistry C, 2011, 115(6): 2769–2775
https://doi.org/10.1021/jp1096822
64 JQin, R Li, CLu, et al.. Ag/ZnO/graphene oxide heterostructure for the removal of rhodamine B by the synergistic adsorption–degradation effects. Ceramics International, 2015, 41(3): 4231–4237
https://doi.org/10.1016/j.ceramint.2014.11.046
65 J MNhut, L Pesant, J PTessonnier, et al.. Mesoporous carbon nanotubes for use as support in catalysis and as nanosized reactors for one-dimensional inorganic material synthesis. Applied Catalysis A: General, 2003, 254(2): 345–363
https://doi.org/10.1016/S0926-860X(03)00482-4
66 JShi, J Zheng, PWu, et al.. Immobilization of TiO2 films on activated carbon fiber and their photocatalytic degradation properties for dye compounds with different molecular size. Catalysis Communications, 2008, 9(9): 1846–1850
https://doi.org/10.1016/j.catcom.2008.02.018
67 GShen, J H Cho, J K Yoo, et al.. Synthesis and optical properties of S-doped ZnO nanostructures: nanonails and nanowires. The Journal of Physical Chemistry B, 2005, 109(12): 5491–5496
https://doi.org/10.1021/jp045237m pmid: 16851588
68 TOhno, M Akiyoshi, TUmebayashi, et al.. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Applied Catalysis A: General, 2004, 265(1): 115–121
https://doi.org/10.1016/j.apcata.2004.01.007
69 A BPatil, K R Patil, S K Pardeshi. Ecofriendly synthesis and solar photocatalytic activity of S-doped ZnO. Journal of Hazardous Materials, 2010, 183(1–3): 315–323
https://doi.org/10.1016/j.jhazmat.2010.07.026 pmid: 20688430
70 J CLi, Y F Li, T Yang, et al.. Effects of S on solid solubility of Ag and electrical properties of Ag-doped ZnO films grown by radio frequency magnetron sputtering. Journal of Alloys and Compounds, 2013, 550: 479–482
https://doi.org/10.1016/j.jallcom.2012.10.103
71 JYang, C Xu, TYe, et al.. Synthesis of S-doped hierarchical ZnO nanostructures via hydrothermal method and their optical properties. Journal of Materials Science: Materials in Electronics, 2017, 28(2): 1785–1792
https://doi.org/10.1007/s10854-016-5726-4
72 S YBae, H W Seo, J Park. Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition. The Journal of Physical Chemistry B, 2004, 108(17): 5206–5210
https://doi.org/10.1021/jp036720k
73 PZhou, X Yu, LYang, et al.. Simple air oxidation synthesis and optical properties of S-doped ZnO microspheres. Materials Letters, 2007, 61(18): 3870–3872
https://doi.org/10.1016/j.matlet.2006.12.081
74 N RPanda, B S Acharya, P Nayak, et al.. Studies on growth morphology, UV absorbance and luminescence properties of sulphur doped ZnO nanopowders synthesized by the application of ultrasound with varying input power. Ultrasonics Sonochemistry, 2014, 21(2): 582–589
https://doi.org/10.1016/j.ultsonch.2013.08.007 pmid: 24035718
75 X YXie, P Zhan, L YLi, et al.. Synthesis of S-doped ZnO by the interaction of sulfur with zinc salt in PEG200. Journal of Alloys and Compounds, 2015, 644: 383–389
https://doi.org/10.1016/j.jallcom.2015.04.214
76 S JDarzi, A Mahjoub, ABayat. Sulfur modified ZnO nanorod as a high performance photocatalyst for degradation of Congoredazo dye. International Journal of Nano Dimension, 2015, 6(4): 425–431
https://doi.org/10.7508/ijnd.2015.04.011
77 GSanon, R Rup, AMansingh. Band-gap narrowing and band structure in degenerate tin oxide (SnO2) films. Physical Review B: Condensed Matter, 1991, 44(11): 5672–5680
https://doi.org/10.1103/PhysRevB.44.5672 pmid: 9998410
78 B ESernelius, KBerggren, ZJin, et al.. Band-gap tailoring of ZnO by means of heavy Al doping. Physical Review B: Condensed Matter, 1988, 37(17): 10244–10248
https://doi.org/10.1103/PhysRevB.37.10244 pmid: 9944457
79 SLong, Y Li, BYao, et al.. Effect of doping behaviors of Ag and S on the formation of p-type Ag–S co-doped ZnO film by a modified hydrothermal method. Thin Solid Films, 2016, 600: 13–18
https://doi.org/10.1016/j.tsf.2015.12.070
80 CCruz-Vázquez, FRocha-Alonzo, S EBurruel-Ibarra, et al.. Fabrication and characterization of sulfur doped zinc oxide thin films. Superficies y Vacío, 2001, 13: 89–91
81 X HWang, S Liu, PChang, et al.. Influence of S incorporation on the luminescence property of ZnO nanowires by electrochemical deposition. Physics Letters A, 2008, 372(16): 2900–2903
https://doi.org/10.1016/j.physleta.2007.12.047
82 XZhang, X Yan, JZhao, et al.. Structure and photoluminescence of S-doped ZnO nanorod arrays. Materials Letters, 2009, 63(3–4): 444–446
https://doi.org/10.1016/j.matlet.2008.11.006
83 Y ZYoo, Z W Jin, T Chikyow, et al.. S doping in ZnO film by supplying ZnS species with pulsed-laser-deposition method. Applied Physics Letters, 2002, 81(20): 3798–3800
https://doi.org/10.1063/1.1521577
84 B YGeng, G Z Wang, Z Jiang, et al.. Synthesis and optical properties of S-doped ZnO nanowires. Applied Physics Letters, 2003, 82(26): 4791–4793
https://doi.org/10.1063/1.1588735
85 X HWang, S Liu, PChang, et al.. Synthesis of sulfur-doped ZnO nanowires by electrochemical deposition. Materials Science in Semiconductor Processing, 2007, 10(6): 241–245
https://doi.org/10.1016/j.mssp.2008.02.003
86 GPoongodi, R Mohan Kumar, RJayavel. Influence of S doping on structural, optical and visible light photocatalytic activity of ZnO thin films. Ceramics International, 2014, 40(9): 14733–14740
https://doi.org/10.1016/j.ceramint.2014.06.062
87 YYan, M M Al-Jassim, S H Wei. Doping of ZnO by group-IB elements. Applied Physics Letters, 2006, 89(18): 181912
https://doi.org/10.1063/1.2378404
88 C LHsu, I L Su, T J Hsueh. Sulfur-doped-ZnO-nanospire-based transparent flexible nanogenerator self-powered by environmental vibration. RSC Advances, 2015, 5(43): 34019–34026
https://doi.org/10.1039/C5RA03544A
89 H CMa, Y R Ding, Y H Fu, et al.. Microwave assisted hydrothermal synthesis and characterization of N, S co-doped ZnO photocatalyst. Advanced Materials Research, 2012, 616–618: 1841–1844
https://doi.org/10.4028/www.scientific.net/AMR.616-618.1841
90 YSun, T He, HGuo, et al.. Structural and optical properties of the S-doped ZnO particles synthesized by hydrothermal method. Applied Surface Science, 2010, 257(3): 1125–1128
https://doi.org/10.1016/j.apsusc.2010.08.041
91 MBabikier, D Wang, JWang, et al.. Fabrication and properties of sulfur (S)-doped ZnO nanorods. Journal of Materials Science: Materials in Electronics, 2014, 25(1): 157–162
https://doi.org/10.1007/s10854-013-1566-7
92 JCho, Q Lin, SYang, et al.. Sulfur-doped zinc oxide (ZnO) nanostars: Synthesis and simulation of growth mechanism. Nano Research, 2012, 5(1): 20–26
https://doi.org/10.1007/s12274-011-0180-3
93 SKar, P Dutta, TPal, et al.. Simple solvothermal route to synthesize S-doped ZnO nanonails and ZnS/ZnO core/shell nanorods. Chemical Physics Letters, 2009, 473(1–3): 102–107
https://doi.org/10.1016/j.cplett.2009.03.027
94 M HHsu, C J Chang. S-doped ZnO nanorods on stainless-steel wire mesh as immobilized hierarchical photocatalysts for photocatalytic H2 production. International Journal of Hydrogen Energy, 2014, 39(29): 16524–16533
https://doi.org/10.1016/j.ijhydene.2014.02.110
95 H KPark, S P Hong, Y R Do. Vertical growth of ZnO nanorods prepared on an ITO-coated glass substrate by hydrothermal–electrochemical deposition. Journal of the Electrochemical Society, 2012, 159(6): D355–D361
https://doi.org/10.1149/2.078206jes
96 MZha, D Calestani, AZappettini, et al.. Large-area self-catalysed and selective growth of ZnO nanowires. Nanotechnology, 2008, 19(32): 325603
https://doi.org/10.1088/0957-4484/19/32/325603 pmid: 21828816
97 Y CKong, D P Yu, B Zhang, et al.. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Applied Physics Letters, 2001, 78(4): 407–409
https://doi.org/10.1063/1.1342050
98 XZhang, L Wang, GZhou. Synthesis of well-aligned ZnO nanowires without catalysts. Reviews on Advanced Materials Science, 2005, 10(1): 69–72
99 S CLyu, Y Zhang, C JLee, et al.. Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method. Chemistry of Materials, 2003, 15(17): 3294–3299
https://doi.org/10.1021/cm020465j
100 XMeng, Z Shi, XChen, et al.. Temperature behavior of electron-acceptor transitions and oxygen vacancy recombinations in ZnO thin films. Journal of Applied Physics, 2010, 107(2): 023501
https://doi.org/10.1063/1.3284101
101 KVanheusden, W L Warren, C H Seager, et al.. Mechanisms behind green photoluminescence in ZnO phosphor powders. Journal of Applied Physics, 1996, 79(10): 7983–7990
https://doi.org/10.1063/1.362349
102 HQin, W Li, YXia, et al.. Photocatalytic activity of heterostructures based on ZnO and N-doped ZnO. ACS Applied Materials & Interfaces, 2011, 3(8): 3152–3156
https://doi.org/10.1021/am200655h pmid: 21770403
103 Y HTang, T K Sham, A Jürgensen, et al.. Phosphorus-doped silicon nanowires studied by near edge x-ray absorption fine structure spectroscopy. Applied Physics Letters, 2002, 80(20): 3709–3711
https://doi.org/10.1063/1.1478796
104 XDuan, Y Huang, YCui, et al.. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 2001, 409(6816): 66–69
https://doi.org/10.1038/35051047 pmid: 11343112
105 JWang, Z Wang, BHuang, et al.. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Applied Materials & Interfaces, 2012, 4(8): 4024–4030
https://doi.org/10.1021/am300835p pmid: 22786575
106 B NJoshi, H Yoon, S HNa, et al.. Enhanced photocatalytic performance of graphene–ZnO nanoplatelet composite thin films prepared by electrostatic spray deposition. Ceramics International, 2014, 40(2): 3647–3654
https://doi.org/10.1016/j.ceramint.2013.09.060
107 PJongnavakit, P Amornpitoksuk, SSuwanboon, et al.. Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol–gel method. Applied Surface Science, 2012, 258(20): 8192–8198
https://doi.org/10.1016/j.apsusc.2012.05.021
108 J VForeman, J Li, HPeng, et al.. Time-resolved investigation of bright visible wavelength luminescence from sulfur-doped ZnO nanowires and micropowders. Nano Letters, 2006, 6(6): 1126–1130
https://doi.org/10.1021/nl060204z pmid: 16771566
109 RSwapna, M C Santhosh Kumar. Deposition of Na–N dual acceptor doped p-type ZnO thin films and fabrication of p-ZnO:(Na, N)/n-ZnO:Eu homojunction. Materials Science and Engineering B, 2013, 178(16): 1032–1039
https://doi.org/10.1016/j.mseb.2013.06.010
110 XChen, Y B Lou, A C S Samia, et al.. Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: Comparison to a commercial nanopowder. Advanced Functional Materials, 2005, 15(1): 41–49
https://doi.org/10.1002/adfm.200400184
111 I M PSilva, GByzynski, CRibeiro, et al.. Different dye degradation mechanisms for ZnO and ZnO doped with N (ZnO:N). Journal of Molecular Catalysis A: Chemical, 2016, 417: 89–100
https://doi.org/10.1016/j.molcata.2016.02.027
112 DLi, H Haneda. Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 155(1–3): 171–178
https://doi.org/10.1016/S1010-6030(02)00371-4
113 L GWang, A Zunger. Cluster-doping approach for wide-gap semiconductors: the case of p-type ZnO. Physical Review Letters, 2003, 90(25 Pt 1): 256401
https://doi.org/10.1103/PhysRevLett.90.256401 pmid: 12857149
114 P VKamat, R Huehn, RNicolaescu. A “sense and shoot” approach for photocatalytic degradation of organic contaminants in water. The Journal of Physical Chemistry B, 2002, 106(4): 788–794
https://doi.org/10.1021/jp013602t
115 BLin, Z Fu, YJia. Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Applied Physics Letters, 2001, 79(7): 943–945
https://doi.org/10.1063/1.1394173
116 CWu. Facile one-step synthesis of N-doped ZnO micropolyhedrons for efficient photocatalytic degradation of formaldehyde under visible-light irradiation. Applied Surface Science, 2014, 319: 237–243
https://doi.org/10.1016/j.apsusc.2014.04.217
117 XChen, G Zhang, LShi, et al.. Au/ZnO hybrid nanocatalysts impregnated in N-doped graphene for simultaneous determination of ascorbic acid, acetaminophen and dopamine. Materials Science and Engineering C, 2016, 65: 80–89
https://doi.org/10.1016/j.msec.2016.03.106 pmid: 27157730
118 J NSolanki, Z V P Murthy. Controlled size silver nanoparticles synthesis with water-in-oil microemulsion method: A topical review. Industrial & Engineering Chemistry Research, 2011, 50(22): 12311–12323
https://doi.org/10.1021/ie201649x
119 MInoguchi, K Suzuki, KKageyama, et al.. Monodispersed and well-crystallized zinc oxide nanoparticles fabricated by microemulsion method. Journal of the American Ceramic Society, 2008, 91(12): 3850–3855
https://doi.org/10.1111/j.1551-2916.2008.02745.x
120 B PLim, J Wang, S CNg, et al.. A bicontinuous microemulsion route to zinc oxide powder. Ceramics International, 1998, 24(3): 205–209
https://doi.org/10.1016/S0272-8842(97)00003-5
121 MJansen, H P Letschert. Inorganic yellow-red pigments without toxic metals. Nature, 2000, 404(6781): 980–982
https://doi.org/10.1038/35010082 pmid: 10801123
122 HMaki, N Ichinose, ISakaguchi, et al.. The effect of the nitrogen plasma irradiation on ZnO single crystals. Key Engineering Materials, 2001, 216: 61–64
https://doi.org/10.4028/www.scientific.net/KEM.216.61
123 X WZhao, X Y Gao, X M Chen, et al.. Microstructure and optical properties of nitrogen-doped ZnO film. Chinese Physics B, 2013, 22(2): 024202 (4 pages)
https://doi.org/10.1088/1674-1056/22/2/024202
124 YZhao, M Zhou, ZLi, et al.. Effect of strain on the structural and optical properties of Cu–N co-doped ZnO thin films. Journal of Luminescence, 2011, 131(9): 1900–1903
https://doi.org/10.1016/j.jlumin.2011.04.039
125 SChen, W Zhao, SZhang, et al.. Preparation, characterization and photocatalytic activity of N-containing ZnO powder. Chemical Engineering Journal, 2009, 148(2–3): 263–269
https://doi.org/10.1016/j.cej.2008.08.039
126 CWu, Y C Zhang, Q Huang. Solvothermal synthesis of N-doped ZnO microcrystals from commercial ZnO powder with visible light-driven photocatalytic activity. Materials Letters, 2014, 119: 104–106
https://doi.org/10.1016/j.matlet.2013.12.111
127 Y HTang, H Zheng, YWang, et al.. Facile fabrication of nitrogen-doped zinc oxide nanoparticles with enhanced photocatalytic performance. Micro & Nano Letters, 2015, 10(9): 432–434
https://doi.org/10.1049/mnl.2015.0130
128 MZheng, J Wu. One-step synthesis of nitrogen-doped ZnO nanocrystallites and their properties. Applied Surface Science, 2009, 255(11): 5656–5661
https://doi.org/10.1016/j.apsusc.2008.10.091
129 MFutsuhara, K Yoshioka, OTakai. Optical properties of zinc oxynitride thin films. Thin Solid Films, 1998, 317(1–2): 322–325
https://doi.org/10.1016/S0040-6090(97)00646-9
130 XWang, S Yang, JWang, et al.. Nitrogen doped ZnO film grown by the plasma-assisted metal-organic chemical vapor deposition. Journal of Crystal Growth, 2001, 226(1): 123–129
https://doi.org/10.1016/S0022-0248(01)01367-7
131 H COng, A X E Zhu, G T Du. Dependence of the excitonic transition energies and mosaicity on residual strain in ZnO thin films. Applied Physics Letters, 2002, 80(6): 941–943
https://doi.org/10.1063/1.1448660
132 AFouchet, W Prellier, BMercey, et al.. Investigation of laser-ablated ZnO thin films grown with Zn metal target: A structural study. Journal of Applied Physics, 2004, 96(6): 3228–3233
https://doi.org/10.1063/1.1772891
133 D CLook, J W Hemsky, J R Sizelove. Residual native shallow donor in ZnO. Physical Review Letters, 1999, 82(12): 2552–2555
https://doi.org/10.1103/PhysRevLett.82.2552
134 XZhu, H Z Wu, D J Qiu, et al.. Photoluminescence and resonant Raman scattering in N-doped ZnO thin films. Optics Communications, 2010, 283(13): 2695–2699
https://doi.org/10.1016/j.optcom.2010.03.006
135 AMeng, X Li, XWang, et al.. Preparation, photocatalytic properties and mechanism of Fe or N-doped Ag/ZnO nanocomposites. Ceramics International, 2014, 40(7): 9303–9309
https://doi.org/10.1016/j.ceramint.2014.01.153
136 SSöllradl, M Greiwe, V JBukas, et al.. Nitrogen-doping in ZnO via combustion synthesis? Chemistry of Materials, 2015, 27(12): 4188–4195
https://doi.org/10.1021/cm504200q
137 S HPark, J H Chang, H J Ko, et al.. Lattice deformation of ZnO films with high nitrogen concentration. Applied Surface Science, 2008, 254(23): 7972–7975
https://doi.org/10.1016/j.apsusc.2008.04.047
138 NFujimura, T Nishihara, SGoto, et al.. Control of preferred orientation for ZnOx films: control of self-texture. Journal of Crystal Growth, 1993, 130(1–2): 269–279
https://doi.org/10.1016/0022-0248(93)90861-P
139 BPanigrahy, M Aslam, DBahadur. Effect of Fe doping concentration on optical and magnetic properties of ZnO nanorods. Nanotechnology, 2012, 23(11): 115601
https://doi.org/10.1088/0957-4484/23/11/115601 pmid: 22370332
140 C LPerkins, S H Lee, X Li, et al.. Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy. Journal of Applied Physics, 2005, 97(3): 034907
https://doi.org/10.1063/1.1847728
141 LWang, B Lin, LZhou, et al.. Nitrogen-doped ZnO nanorods prepared by hydrothermal diffusion. Materials Letters, 2012, 85: 171–174
https://doi.org/10.1016/j.matlet.2012.06.104
142 A PBhirud, S D Sathaye, R P Waichal, et al.. An eco-friendly, highly stable and efficient nanostructured p-type N-doped ZnO photocatalyst for environmentally benign solar hydrogen production. Green Chemistry, 2012, 14(10): 2790–2798
https://doi.org/10.1039/c2gc35519a
143 XZong, C Sun, HYu, et al.. Activation of photocatalytic water oxidation on N-doped ZnO bundle-like nanoparticles under visible light. The Journal of Physical Chemistry C, 2013, 117(10): 4937–4942
https://doi.org/10.1021/jp311729b
144 SMuthulingam, K B Bae, R Khan, et al.. Carbon quantum dots decorated N-doped ZnO: Synthesis and enhanced photocatalytic activity on UV, visible and daylight sources with suppressed photocorrosion. Journal of Environmental Chemical Engineering, 2016, 4(1): 1148–1155
https://doi.org/10.1016/j.jece.2015.06.029
145 YQiu, H Fan, GTan, et al.. Effect of nitrogen doping on the photo-catalytic properties of nitrogen doped ZnO tetrapods. Materials Letters, 2014, 131: 64–66
https://doi.org/10.1016/j.matlet.2014.05.156
146 MAmanullah, Q A Javed, S Rizwan. Surfactant-assisted carbon doping in ZnO nanowires using Poly Ethylene Glycol (PEG). Materials Chemistry and Physics, 2016, 180: 128–134
https://doi.org/10.1016/j.matchemphys.2016.05.051
147 A BLavand, Y S Malghe. Synthesis, characterization and visible light photocatalytic activity of nitrogen-doped zinc oxide nanospheres. Journal of Asian Ceramic Societies, 2015, 3(3): 305–310
https://doi.org/10.1016/j.jascer.2015.06.002
148 JLu, J Zhu, ZWang, et al.. Rapid synthesis and thermal catalytic performance of N-doped ZnO/Ag nanocomposites. Ceramics International, 2014, 40(1): 1489–1494
https://doi.org/10.1016/j.ceramint.2013.07.033
149 JDu, Z Liu, YHuang, et al.. Control of ZnO morphologies via surfactants assisted route in the subcritical water. Journal of Crystal Growth, 2005, 280(1–2): 126–134
https://doi.org/10.1016/j.jcrysgro.2005.03.006
150 XGao, X Li, WYu. Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex. The Journal of Physical Chemistry B, 2005, 109(3): 1155–1161
https://doi.org/10.1021/jp046267s pmid: 16851075
151 FTuomisto, K Saarinen, D CLook, et al.. Introduction and recovery of point defects in electron-irradiated ZnO. Physical Review B: Condensed Matter and Materials Physics, 2005, 72(8): 085206
https://doi.org/10.1103/PhysRevB.72.085206
152 DLi, H Haneda. Enhancement of photocatalytic activity of sprayed nitrogen-containing ZnO powders by coupling with metal oxides during the acetaldehyde decomposition. Chemosphere, 2004, 54(8): 1099–1110
https://doi.org/10.1016/j.chemosphere.2003.09.022 pmid: 14664838
153 DQu, M Zheng, PDu, et al.. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale, 2013, 5(24): 12272–12277
https://doi.org/10.1039/c3nr04402e pmid: 24150696
154 HZeng, W Cai, JHu, et al.. Violet photoluminescence from shell layer of Zn/ZnO core–shell nanoparticles induced by laser ablation. Applied Physics Letters, 2006, 88(17): 171910
https://doi.org/10.1063/1.2196051
155 MNaouar, I Ka, MGaidi, et al.. Growth, structural and optoelectronic properties tuning of nitrogen-doped ZnO thin films synthesized by means of reactive pulsed laser deposition. Materials Research Bulletin, 2014, 57: 47–51
https://doi.org/10.1016/j.materresbull.2014.05.020
156 QDong, S Yin, CGuo, et al.. Single-crystalline porous NiO nanosheets prepared from β-Ni(OH)2 nanosheets: Magnetic property and photocatalytic activity. Applied Catalysis B: Environmental, 2014, 147: 741–747
https://doi.org/10.1016/j.apcatb.2013.10.007
157 JKrýsa, M Keppert, JJirkovský, et al.. The effect of thermal treatment on the properties of TiO2 photocatalyst. Materials Chemistry and Physics, 2004, 86(2–3): 333–339
https://doi.org/10.1016/j.matchemphys.2004.03.021
158 JShen, Y Hu, CLi, et al.. Synthesis of amphiphilic graphene nanoplatelets. Small, 2009, 5(1): 82–85
https://doi.org/10.1002/smll.200800988 pmid: 19040216
159 BLi, H Cao. ZnO@graphene composite with enhanced performance for the removal of dye from water. Journal of Materials Chemistry, 2011, 21(10): 3346–3349
https://doi.org/10.1039/C0JM03253K
160 CLee, X Wei, J WKysar, et al.. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388
https://doi.org/10.1126/science.1157996 pmid: 18635798
161 LJiao, L Zhang, XWang, et al.. Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009, 458(7240): 877–880
https://doi.org/10.1038/nature07919 pmid: 19370031
162 SStankovich, D A Dikin, G H B Dommett, et al.. Graphene-based composite materials. Nature, 2006, 442(7100): 282–286
https://doi.org/10.1038/nature04969 pmid: 16855586
163 YYang, L Ren, CZhang, et al.. Facile fabrication of functionalized graphene sheets (FGS)/ZnO nanocomposites with photocatalytic property. ACS Applied Materials & Interfaces, 2011, 3(7): 2779–2785
https://doi.org/10.1021/am200561k pmid: 21682271
164 QMa, X Zhu, DZhang, et al.. Graphene oxide—a surprisingly good nucleation seed and adhesion promotion agent for one-step ZnO lithography and optoelectronic applications. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2014, 2(42): 8956–8961
https://doi.org/10.1039/C4TC01573H
165 J TPaci, T Belytschko, G CSchatz. Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide. The Journal of Physical Chemistry C, 2007, 111(49): 18099–18111
https://doi.org/10.1021/jp075799g
166 DChen, D Wang, QGe, et al.. Graphene-wrapped ZnO nanospheres as a photocatalyst for high performance photocatalysis. Thin Solid Films, 2015, 574: 1–9
https://doi.org/10.1016/j.tsf.2014.11.051
167 FXu, Y Yuan, DWu, et al.. Synthesis of ZnO/Ag/graphene composite and its enhanced photocatalytic efficiency. Materials Research Bulletin, 2013, 48(6): 2066–2070
https://doi.org/10.1016/j.materresbull.2013.02.034
168 WLiu, M Wang, CXu, et al.. Significantly enhanced visible-light photocatalytic activity of g-C3N4 via ZnO modification and the mechanism study. Journal of Molecular Catalysis A: Chemical, 2013, 368–369: 9–15
https://doi.org/10.1016/j.molcata.2012.11.007
169 NTu, K T Nguyen, D Q Trung, et al.. Effects of carbon on optical properties of ZnO powder. Journal of Luminescence, 2016, 174: 6–10
https://doi.org/10.1016/j.jlumin.2016.01.031
170 GZhang, H Zhang, XZhang, et al.. Solid-solution-like ZnO/C composites as excellent anode materials for lithium ion batteries. Electrochimica Acta, 2015, 186: 165–173
https://doi.org/10.1016/j.electacta.2015.10.133
171 HOuyang, J F Huang, C Li, et al.. Synthesis of carbon doped ZnO with a porous structure and its solar-light photocatalytic properties. Materials Letters, 2013, 111: 217–220
https://doi.org/10.1016/j.matlet.2013.08.081
172 XLi, Q Wang, YZhao, et al.. Green synthesis and photo-catalytic performances for ZnO-reduced graphene oxide nanocomposites. Journal of Colloid and Interface Science, 2013, 411: 69–75
https://doi.org/10.1016/j.jcis.2013.08.050 pmid: 24112842
173 SSakong, P Kratzer. Density functional study of carbon doping in ZnO. Semiconductor Science and Technology, 2011, 26(1): 014038
https://doi.org/10.1088/0268-1242/26/1/014038
174 LPan, T Muhammad, LMa, et al.. MOF-derived C-doped ZnO prepared via a two-step calcination for efficient photocatalysis. Applied Catalysis B: Environmental, 2016, 189: 181–191
https://doi.org/10.1016/j.apcatb.2016.02.066
175 HPan, J B Yi, L Shen, et al.. Room-temperature ferromagnetism in carbon-doped ZnO. Physical Review Letters, 2007, 99(12): 127201
https://doi.org/10.1103/PhysRevLett.99.127201 pmid: 17930547
176 BNeumann, P Bogdanoff, HTributsch, et al.. Electrochemical mass spectroscopic and surface photovoltage studies of catalytic water photooxidation by undoped and carbon-doped titania. The Journal of Physical Chemistry B, 2005, 109(35): 16579–16586
https://doi.org/10.1021/jp051339g pmid: 16853109
177 SKaciulis. Spectroscopy of carbon: from diamond to nitride films. Surface and Interface Analysis, 2012, 44(8): 1155–1161
https://doi.org/10.1002/sia.4892
178 SAkbar, S K Hasanain, M Abbas, et al.. Defect induced ferromagnetism in carbon-doped ZnO thin films. Solid State Communications, 2011, 151(1): 17–20
https://doi.org/10.1016/j.ssc.2010.10.035
179 JZhai, L Wang, DWang, et al.. UV-illumination room-temperature gas sensing activity of carbon-doped ZnO microspheres. Sensors and Actuators B: Chemical, 2012, 161(1): 292–297
https://doi.org/10.1016/j.snb.2011.10.034
180 TMajumder, S P Mondal. Advantages of nitrogen-doped graphene quantum dots as a green sensitizer with ZnO nanorod based photoanodes for solar energy conversion. Journal of Electroanalytical Chemistry, 2016, 769: 48–52
https://doi.org/10.1016/j.jelechem.2016.03.018
181 Y PZhu, M Li, Y LLiu, et al.. Carbon-doped ZnO hybridized homogeneously with graphitic carbon nitride nanocomposites for photocatalysis. The Journal of Physical Chemistry C, 2014, 118(20): 10963–10971
https://doi.org/10.1021/jp502677h
182 H FLin, S C Liao, S W Hung. The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 174(1): 82–87
https://doi.org/10.1016/j.jphotochem.2005.02.015
183 OBechambi, S Sayadi, WNajjar. Photocatalytic degradation of bisphenol A in the presence of C-doped ZnO: Effect of operational parameters and photodegradation mechanism. Journal of Industrial and Engineering Chemistry, 2015, 32: 201–210
https://doi.org/10.1016/j.jiec.2015.08.017
184 KDai, G Dawson, SYang, et al.. Large scale preparing carbon nanotube/zinc oxide hybrid and its application for highly reusable photocatalyst. Chemical Engineering Journal, 2012, 191: 571–578
https://doi.org/10.1016/j.cej.2012.03.008
185 ATayyebi, M outokesh, MTayebi, et al.. ZnO quantum dots–graphene composites: Formation mechanism and enhanced photocatalytic activity for degradation of methyl orange dye. Journal of Alloys and Compounds, 2016, 663: 738–749
https://doi.org/10.1016/j.jallcom.2015.12.169
186 M CHsiao, S H Liao, M Y Yen, et al.. Preparation of covalently functionalized graphene using residual oxygen-containing functional groups. ACS Applied Materials & Interfaces, 2010, 2(11): 3092–3099
https://doi.org/10.1021/am100597d pmid: 20949901
187 DLi, H Haneda. Morphologies of zinc oxide particles and their effects on photocatalysis. Chemosphere, 2003, 51(2): 129–137
https://doi.org/10.1016/S0045-6535(02)00787-7 pmid: 12586145
188 YLi, B P Zhang, J X Zhao, et al.. ZnO/carbon quantum dots heterostructure with enhanced photocatalytic properties. Applied Surface Science, 2013, 279: 367–373
https://doi.org/10.1016/j.apsusc.2013.04.114
189 SLiu, H Sun, ASuvorova, et al.. One-pot hydrothermal synthesis of ZnO-reduced graphene oxide composites using Zn powders for enhanced photocatalysis. Chemical Engineering Journal, 2013, 229: 533–539
https://doi.org/10.1016/j.cej.2013.06.063
190 AWei, L Xiong, LSun, et al.. One-step electrochemical synthesis of a graphene–ZnO hybrid for improved photocatalytic activity. Materials Research Bulletin, 2013, 48(8): 2855–2860
https://doi.org/10.1016/j.materresbull.2013.04.012
191 FXu, Y Lu, YXie, et al.. Synthesis and photoluminescence of assembly-controlled ZnO architectures by aqueous chemical growth. The Journal of Physical Chemistry C, 2009, 113(3): 1052–1059
https://doi.org/10.1021/jp808456r
192 JMu, C Shao, ZGuo, et al.. High photocatalytic activity of ZnO–carbon nanofiber heteroarchitectures. ACS Applied Materials & Interfaces, 2011, 3(2): 590–596
https://doi.org/10.1021/am101171a pmid: 21291208
193 J CSin, S M Lam, I Satoshi, et al.. Sunlight photocatalytic activity enhancement and mechanism of novel europium-doped ZnO hierarchical micro/nanospheres for degradation of phenol. Applied Catalysis B: Environmental, 2014, 148–149: 258–268
https://doi.org/10.1016/j.apcatb.2013.11.001
194 BZou, R Liu, FWang, et al.. Lasing mechanism of ZnO nanowires/nanobelts at room temperature. The Journal of Physical Chemistry B, 2006, 110(26): 12865–12873
https://doi.org/10.1021/jp061357d pmid: 16805584
195 LJing, Y Qu, BWang, et al.. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Solar Energy Materials and Solar Cells, 2006, 90(12): 1773–1787
https://doi.org/10.1016/j.solmat.2005.11.007
196 CLi, G Hong, PWang, et al.. Wet chemical approaches to patterned arrays of well-aligned ZnO nanopillars assisted by monolayer colloidal crystals. Chemistry of Materials, 2009, 21(5): 891–897
https://doi.org/10.1021/cm802839u
197 WHe, H K Kim, W G Wamer, et al.. Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. Journal of the American Chemical Society, 2014, 136(2): 750–757
https://doi.org/10.1021/ja410800y pmid: 24354568
198 HBozetine, Q Wang, ABarras, et al.. Green chemistry approach for the synthesis of ZnO–carbon dots nanocomposites with good photocatalytic properties under visible light. Journal of Colloid and Interface Science, 2016, 465: 286–294
https://doi.org/10.1016/j.jcis.2015.12.001 pmid: 26674245
[1] Zheng-Zheng YIN, Wei HUANG, Xiang SONG, Qiang ZHANG, Rong-Chang ZENG. Self-catalytic degradation of iron-bearing chemical conversion coating on magnesium alloys ---- Influence of Fe content[J]. Front. Mater. Sci., 2020, 14(3): 296-313.
[2] Zhiyu ZHANG, Lixia HU, Hui ZHANG, Liping YU, Yunxiao LIANG. Large-sized nano-TiO2/SiO2 mesoporous nanofilm-constructed macroporous photocatalysts with excellent photocatalytic performance[J]. Front. Mater. Sci., 2020, 14(2): 163-176.
[3] Pengfei ZHU, Zhihao REN, Ruoxu WANG, Ming DUAN, Lisi XIE, Jing XU, Yujing TIAN. Preparation and visible photocatalytic dye degradation of Mn-TiO2/sepiolite photocatalysts[J]. Front. Mater. Sci., 2020, 14(1): 33-42.
[4] Elias ASSAYEHEGN, Ananthakumar SOLAIAPPAN, Yonas CHEBUDIE, Esayas ALEMAYEHU. Influence of temperature on preparing mesoporous mixed phase N/TiO2 nanocomposite with enhanced solar light photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 352-366.
[5] Chi WANG, Kai LI, Xin SUN, Yi MEI, Xin SONG, Ping NING, Lina SUN. Surface characteristics of regenerative Fe-KOH/LSB catalysts for low-temperature catalytic hydrolysis of carbon disulfide and research of the surface regeneration mechanism[J]. Front. Mater. Sci., 2018, 12(4): 426-437.
[6] M. Mohamed Jaffer SADIQ, U. Sandhya SHENOY, D. Krishna BHAT. Synthesis of BaWO4/NRGO‒g-C3N4 nanocomposites with excellent multifunctional catalytic performance via microwave approach[J]. Front. Mater. Sci., 2018, 12(3): 247-263.
[7] Huan-Yan XU, Yuan WANG, Tian-Nuo SHI, Hang ZHAO, Qu TAN, Bo-Chao ZHAO, Xiu-Lan HE, Shu-Yan QI. Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: kinetics and Fenton-like mechanism[J]. Front. Mater. Sci., 2018, 12(1): 34-44.
[8] Huan-Yan XU, Yuan WANG, Tian-Nuo SHI, Hang ZHAO, Qu TAN, Bo-Chao ZHAO, Xiu-Lan HE, Shu-Yan QI. Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: combination mechanism and affecting parameters[J]. Front. Mater. Sci., 2018, 12(1): 21-33.
[9] Madhulika SHARMA, Pranab Kishore MOHAPATRA, Dhirendra BAHADUR. Improved photocatalytic degradation of organic dye using Ag3PO4/MoS2 nanocomposite[J]. Front. Mater. Sci., 2017, 11(4): 366-374.
[10] Jun WU, Chentian SHI, Yupeng ZHANG, Qiang FU, Chunxu PAN. Photocatalytic mechanism of high-activity anatase TiO2 with exposed (001) facets from molecular-atomic scale: HRTEM and Raman studies[J]. Front. Mater. Sci., 2017, 11(4): 358-365.
[11] Jin ZHANG, Li-Li PENG, Ying TANG, Huijie WU. Convenient synthesis of twin-Christmas tree-like PbWO4 microcrystals and their photocatalytic properties[J]. Front. Mater. Sci., 2017, 11(2): 139-146.
[12] Miriam ESTRADA FLORES,Patricia SANTIAGO JACINTO,Carmen M. REZA SAN GERMÁN,Luis RENDÓN VÁZQUEZ,Raúl BORJA URBY,Nicolás CAYETANO CASTRO. Surfactant-free synthesis of metallic bismuth spheres by microwave-assisted solvothermal approach as a function of the power level[J]. Front. Mater. Sci., 2016, 10(4): 394-404.
[13] Tao JIN,Fan-mei KONG,Rui-qin BAI,Ru-liang ZHANG. Anti-corrosion mechanism of epoxy-resin and different content Fe2O3 coatings on magnesium alloy[J]. Front. Mater. Sci., 2016, 10(4): 367-374.
[14] Bao YANG,Hong ZHANG,Jia GUO,Ya LIU,Zhicheng LI. Electrical properties and thermal sensitivity of Ti/Y modified CuO-based ceramic thermistors[J]. Front. Mater. Sci., 2016, 10(4): 413-421.
[15] Hang ZHAO,Ling WENG,Wei-Wei CUI,Xiao-Rui ZHANG,Huan-Yan XU,Li-Zhu LIU. In situ anchor of magnetic Fe3O4 nanoparticles onto natural maifanite as efficient heterogeneous Fenton-like catalyst[J]. Front. Mater. Sci., 2016, 10(3): 300-309.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed