Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2018, Vol. 12 Issue (1) : 34-44    https://doi.org/10.1007/s11706-018-0412-5
RESEARCH ARTICLE
Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: kinetics and Fenton-like mechanism
Huan-Yan XU(), Yuan WANG, Tian-Nuo SHI, Hang ZHAO, Qu TAN, Bo-Chao ZHAO, Xiu-Lan HE, Shu-Yan QI
School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
 Download: PDF(355 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The kinetics and Fenton-like mechanism are two challenging tasks for heterogeneous Fenton-like catalytic oxidation of organic pollutants. In this study, three kinetic models were used for the kinetic studies of Fe3O4/MWCNTs-H2O2 Fenton-like reaction for MO degradation. The results indicated that this reaction followed the first-order kinetic model. The relationship of reaction rate constant and temperature followed the Arrhenius equation. The activation energy and frequency factor of this system were calculated as 8.2 kJ·mol−1 and 2.72 s−1, respectively. The quantifications of Fe ions dissolution and ?OH radicals generation confirmed that the homogeneous and heterogeneous catalyses were involved in Fe3O4/MWCNTs-H2O2 Fenton-like reaction. The reaction rate constant was closely related with Fe ions dissolution and ?OH radicals generation. Fe3O4/MWCNTs nanocomposites had typical ferromagnetic property and could be easily separated from solution by an external magnet after being used. Furthermore, Fe3O4/MWCNTs nanocomposites exhibited good stability and recyclability. Finally, the Fenton-like mechanisms on homogeneous and heterogeneous catalyses were described.

Keywords MWCNTs      Fe3O4 NPs      kinetics      ?OH radicals      Fenton-like mechanism     
Corresponding Author(s): Huan-Yan XU   
Online First Date: 02 February 2018    Issue Date: 07 March 2018
 Cite this article:   
Huan-Yan XU,Yuan WANG,Tian-Nuo SHI, et al. Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: kinetics and Fenton-like mechanism[J]. Front. Mater. Sci., 2018, 12(1): 34-44.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-018-0412-5
https://academic.hep.com.cn/foms/EN/Y2018/V12/I1/34
Fig.1  Scheme 1&chsp;Hydroxylation reaction of SA as the probe molecule for detection of •OH radicals.
MO concentration
/(mg·L−1)
H2O2 concentration
/(mmol·L−1)
Catalyst dosage
/(g·L−1)
Temperature/K pH First order Second order BMG
k1 adj.R2 k2 adj.R2 m b adj.R2
50 19.38 2 293 1 0.0888 0.9552 0.0363 0.8291 27.8205 0.4378 0.4104
50 19.38 2 293 2 0.0943 0.9545 0.0490 0.8237 25.8592 0.4713 0.4338
50 19.38 2 293 3 0.0702 0.9388 0.0132 0.8491 46.4999 0.0901 0.2147
50 19.38 2 293 4 0.0601 0.8884 0.0090 0.5916 84.6027 −0.5537 0.3261
50 19.38 2 293 5 0.0256 0.8942 0.0011 0.7717 136.006 −1.1163 0.8300
50 9.69 2 293 2 0.0844 0.9578 0.0283 0.7901 46.0899 0.0570 0.2435
50 19.38 2 293 2 0.0943 0.9545 0.0490 0.8237 25.8592 0.4713 0.4338
50 29.07 2 293 2 0.0708 0.9511 0.0147 0.6713 70.3582 −0.3913 0.0247
50 38.76 2 293 2 0.0636 0.9389 0.0099 0.7217 74.1351 −0.4334 0.0775
50 48.45 2 293 2 0.0584 0.9072 0.0076 0.6664 131.340 −1.5645 0.4670
50 19.38 1 293 2 0.0818 0.9317 0.0233 0.6809 128.723 −1.6327 0.3049
50 19.38 2 293 2 0.0943 0.9545 0.0490 0.8237 25.8592 0.4713 0.4338
50 19.38 3 293 2 0.0978 0.9716 0.0695 0.7189 15.4185 0.6870 0.8476
50 19.38 4 293 2 0.0999 0.9482 0.0913 0.7972 8.38025 0.8299 0.9569
50 19.38 5 293 2 0.1200 0.9685 0.3239 0.6121 4.30795 0.9121 0.9914
50 19.38 2 293 2 0.0943 0.9545 0.0490 0.8237 25.8592 0.4713 0.4338
50 19.38 2 303 2 0.1002 0.9209 0.0764 0.5130 15.3699 0.6896 0.8774
50 19.38 2 313 2 0.1244 0.9590 0.3471 0.6092 7.26785 0.8551 0.9863
50 19.38 2 323 2 0.1261 0.9324 0.3427 0.5859 0.82664 0.9853 0.9999
50 19.38 2 333 2 0.1391 0.9659 0.4117 0.5947 0.25183 0.9960 1.0000
10 19.38 2 293 2 0.1240 0.9293 1.1519 0.7215 1.02254 0.9809 0.9999
30 19.38 2 293 2 0.1008 0.9730 0.1324 0.6527 17.2043 0.6512 0.8272
50 19.38 2 293 2 0.0943 0.9545 0.0363 0.8291 25.8592 0.4713 0.4338
70 19.38 2 293 2 0.0658 0.9780 0.0089 0.6809 41.9439 0.1936 0.1108
90 19.38 2 293 2 0.0596 0.9541 0.0048 0.7293 58.1683 −0.1193 0.2245
Tab.1  Kinetic parameters of three models and their adjusted correlation coefficients (adj.R2)
Fig.2  The linear regression analysis to lnk1 versus 103/T.
Fig.3  Fe dissolution (bar chart) and •OH generation (line graph) at different solution pHs in Fe3O4/MWCNTs-H2O2 Fenton-like reaction (experimental conditions: [MO]0 = 50 mg·L−1, [H2O2]0 = 19.38 mmol·L−1, catalyst dosage= 2 g·L−1, t = 30 min and T = 293 K).
Fig.4  Fe dissolution (bar chart) and •OH generation (line graph) with different initial H2O2 concentrations in Fe3O4/MWCNTs-H2O2 Fenton-like reaction (experimental conditions: [MO]0 = 50 mg·L−1, pH= 2, catalyst dosage= 2 g·L−1, t = 30 min and T = 293 K).
Fig.5  Fe dissolution (bar chart) and •OH generation (line graph) with different catalyst dosages in Fe3O4/MWCNTs-H2O2 Fenton-like reaction (experimental conditions: [MO]0 = 50 mg·L−1, pH= 2, [H2O2]0 = 19.38 mmol·L−1, t = 30 min and T = 293 K).
Fig.6  Fe dissolution (bar chart) and •OH generation (line graph) at different reaction temperatures in Fe3O4/MWCNTs-H2O2 Fenton-like reaction (experimental conditions: [MO]0 = 50 mg·L−1, pH= 2, [H2O2]0 = 19.38 mmol·L−1, catalyst dosage= 2 g·L−1 and t = 30 min).
Fig.7  Magnetization curves of Fe3O4 NPs and Fe3O4/MWCNTs nanocomposites (inset: magnetic separation of Fe3O4/MWCNTs nanocomposites from solution after being used).
Fig.8  Cycling tests on MO degradation (bar chart) and weight loss of Fe3O4/MWCNTs (line graph) in Fe3O4/MWCNTs-H2O2 Fenton-like reaction (experimental conditions: [MO]0 = 50 mg·L−1, pH= 2, [H2O2]0 = 19.38 mmol·L−1, catalyst dosage= 2 g·L−1, t = 60 min and T = 293 K).
Fig.9  Contrast experiments on the removal of 50 mg·L−1 MO at pH= 2 and room temperature in different systems (the dosage of solid material is 2.0 g·L−1, and if needed, the initial H2O2 concentration is 19.38 mmol·L−1).
Fig.10  UV-vis absorption spectra and digital images (inset) of MO solution after different periods during the Fenton-like reaction (experimental conditions: pH 2.0, initial MO concentration 50 mg·L−1, catalyst dosage 2.0 g·L−1, initial H2O2 concentration 19.38 mmol·L−1, and room temperature).
Fig.11  Fenton-like mechanisms on homogeneous and heterogeneous catalyses in the Fe3O4/MWCNTs-H2O2 system.
1 Yagub M T, Sen  T K, Afroze  S, et al.. Dye and its removal from aqueous solution by adsorption: a review. Advances in Colloid and Interface Science, 2014, 209: 172–184
https://doi.org/10.1016/j.cis.2014.04.002 pmid: 24780401
2 Labiadh L, Oturan  M A, Panizza  M, et al.. Complete removal of AHPS synthetic dye from water using new electro-fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst. Journal of Hazardous Materials, 2015, 297: 34–41
https://doi.org/10.1016/j.jhazmat.2015.04.062 pmid: 25935408
3 Singh R L, Singh  P K, Singh  R P. Enzymatic decolorization and degradation of azo dyes — a review. International Biodeterioration & Biodegradation, 2015, 104: 21–31
https://doi.org/10.1016/j.ibiod.2015.04.027
4 Jorfi S, Barzegar  G, Ahmadi M, et al.. Enhanced coagulation-photocatalytic treatment of acid red 73 dye and real textile wastewater using UVA/synthesized MgO nanoparticles. Journal of Environmental Management, 2016, 177: 111–118
https://doi.org/10.1016/j.jenvman.2016.04.005 pmid: 27086271
5 Tan K B, Vakili  M, Horri B A, et al.. Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms. Separation and Purification Technology, 2015, 150: 229–242
https://doi.org/10.1016/j.seppur.2015.07.009
6 Gupta V K, Kumar  R, Nayak A, et al.. Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Advances in Colloid and Interface Science, 2013, 193–194: 24–34
https://doi.org/10.1016/j.cis.2013.03.003 pmid: 23579224
7 Ahmad A, Mohd-Setapar  S H, Chuong  C S, et al.. Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Advances, 2015, 5(39): 30801–30818
https://doi.org/10.1039/C4RA16959J
8 Jafari A J, Kakavandi  B, Jaafarzadeh N, et al.. Fenton-like catalytic oxidation of tetracycline by AC@Fe3O4 as a heterogeneous persulfate activator: adsorption and degradation studies. Journal of Industrial and Engineering Chemistry, 2017, 45: 323–333
https://doi.org/10.1016/j.jiec.2016.09.044
9 Asghar A, Raman  A A A, Daud  W M A W. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review. Journal of Cleaner Production, 2015, 87: 826–838
https://doi.org/10.1016/j.jclepro.2014.09.010
10 Boczkaj G, Fernandes  A. Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review. Chemical Engineering Journal, 2017, 320: 608–633
https://doi.org/10.1016/j.cej.2017.03.084
11 Lan H, Wang  A, Liu R, et al.. Heterogeneous photo-Fenton degradation of acid red B over Fe2O3 supported on activated carbon fiber. Journal of Hazardous Materials, 2015, 285: 167–172
https://doi.org/10.1016/j.jhazmat.2014.10.057 pmid: 25497030
12 Bokare A D, Choi  W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 2014, 275: 121–135
https://doi.org/10.1016/j.jhazmat.2014.04.054 pmid: 24857896
13 Magario I, García  E F S, Rueda  E H, et al.. Mechanisms of radical generation in the removal of phenol derivatives and pigments using different Fe-based catalytic systems. Journal of Molecular Catalysis A: Chemical, 2012, 352: 1–20
https://doi.org/10.1016/j.molcata.2011.10.006
14 Wang J L, Xu  L J. Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Critical Reviews in Environmental Science and Technology, 2012, 42(3): 251–325
https://doi.org/10.1080/10643389.2010.507698
15 Zhu S M, Dong  B Z, Yu  Y H, et al.. Heterogeneous catalysis of ozone using ordered mesoporous Fe3O4 for degradation of atrazine. Chemical Engineering Journal, 2017, 328: 527–535
https://doi.org/10.1016/j.cej.2017.07.083
16 Gan G Q, Zhao  P, Zhang X Q, et al.. Degradation of pantoprazole in aqueous solution using magnetic nanoscaled Fe3O4/CeO2 composite: effect of system parameters and degradation pathway. Journal of Alloys and Compounds, 2017, 725: 472–483
https://doi.org/10.1016/j.jallcom.2017.07.063
17 Tian X J, Liu  Y F, Chi  W D, et al.. Catalytic degradation of phenol and p-nitrophenol using Fe3O4/MWCNT nanocomposites as heterogeneous Fenton-like catalyst. Water, Air, and Soil Pollution, 2017, 228(8): 297
https://doi.org/10.1007/s11270-017-3485-3
18 Garcia J C, Pedroza  A M, Daza  C E. Magnetic Fenton and photo-Fenton-like catalysts supported on carbon nanotubes for wastewater treatment. Water, Air, and Soil Pollution, 2017, 228(7): 246
https://doi.org/10.1007/s11270-017-3420-7
19 Shi T, Peng  J, Chen J Q, et al.. Heterogeneous photo-Fenton degradation of norfloxacin with Fe3O4-multiwalled carbon nanotubes in aqueous solution. Catalysis Letters, 2017, 147(6): 1598–1607
https://doi.org/10.1007/s10562-017-2026-4
20 Xu H Y, Shi  T N, Zhao  H, et al.. Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: process optimization by response surface methodology. Frontiers of Materials Science, 2016, 10(1): 45–55
https://doi.org/10.1007/s11706-016-0326-z
21 Akhi Y, Irani  M, Olya M E. Simultaneous degradation of phenol and paracetamol using carbon/MWCNT/Fe3O4 composite nanofibers during photo-like-Fenton process. Journal of the Taiwan Institute of Chemical Engineers, 2016, 63: 327–335
https://doi.org/10.1016/j.jtice.2016.03.028
22 Deng J, Wen  X, Li J. Fabrication highly dispersed Fe3O4 nanoparticles on carbon nanotubes and its application as a mimetic enzyme to degrade Orange II. Environmental Technolo-gy, 2016, 37(17): 2214–2221
https://doi.org/10.1080/09593330.2016.1146339 pmid: 26828855
23 Yu L, Yang  X F, Ye  Y S, et al.. Efficient removal of atrazine in water with a Fe3O4/MWCNTs nanocomposite as a heterogeneous Fenton-like catalyst. RSC Advances, 2015, 5(57): 46059–46066
https://doi.org/10.1039/C5RA04249F
24 Cleveland V, Bingham  J P, Kan  E. Heterogeneous Fenton degradation of bisphenol A by carbon nanotube-supported Fe3O4. Separation and Purification Technology, 2014, 133: 388–395
https://doi.org/10.1016/j.seppur.2014.06.061
25 Wang H, Jiang  H, Wang S, et al.. Fe3O4-MWCNT magnetic nanocomposites as efficient peroxidase mimic catalysts in a Fenton-like reaction for water purification without pH limitation. RSC Advances, 2014, 4(86): 45809–45815
https://doi.org/10.1039/C4RA07327D
26 Zhou L C, Zhang  H, Ji L Q, et al.. Fe3O4/MWCNT as a heterogeneous Fenton catalyst: degradation pathways of tetrabromobisphenol A. RSC Advances, 2014, 4(47): 24900–24908
https://doi.org/10.1039/c4ra02333a
27 Hu X B, Deng  Y H, Gao  Z Q, et al.. Transformation and reduction of androgenic activity of 17 alpha-methyltestosterone in Fe3O4/MWCNTs-H2O2 system. Applied Catalysis B: Environmental, 2012, 127: 167–174
https://doi.org/10.1016/j.apcatb.2012.08.018
28 Deng J H, Wen  X H, Wang  Q N. Solvothermal in situ synthesis of Fe3O4-multiwalled carbon nanotubes with enhanced heterogeneous Fenton-like activity. Materials Research Bulletin, 2012, 47(11): 3369–3376
https://doi.org/10.1016/j.materresbull.2012.07.021
29 Hu X B, Liu  B Z, Deng  Y H, et al.. Adsorption and heterogeneous Fenton degradation of 17 alpha-methyltestosterone on nano Fe3O4/MWCNTs in aqueous solution. Applied Catalysis B: Environmental, 2011, 107(3–4): 274–283
https://doi.org/10.1016/j.apcatb.2011.07.025
30 Xu H Y, Wang  Y, Shi T N, et al.. Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: combination mechanism and affecting parameters. Frontiers of Materials Science, 2018, 12(1): 21–33
https://doi.org/10.1007/s11706-018-0408-1
31 Brink A, Sheridan  C M, Harding  K G. The Fenton oxidation of biologically treated paper and pulp mill effluents: a performance and kinetic study. Process Safety and Environmental Protection, 2017, 107: 206–215
https://doi.org/10.1016/j.psep.2017.02.011
32 Saini R, Mondal  M K, Kumar  P. Fenton oxidation of pesticide methyl parathion in aqueous aolution: kinetic study of the degradation. Environmental Progress & Sustainable Energy, 2017, 36(2): 420–427
https://doi.org/10.1002/ep.12473
33 Park C M, Heo  J, Yoon Y. Oxidative degradation of bisphenol A and 17α-ethinyl estradiol by Fenton-like activity of silver nanoparticles in aqueous solution. Chemosphere, 2017, 168: 617–622 
https://doi.org/10.1016/j.chemosphere.2016.11.016 pmid: 27838031
34 Xu H Y, Shi  T N, Wu  L C, et al.. Discoloration of methyl orange in the presence of schorl and H2O2: kinetics and mechanism. Water, Air, and Soil Pollution, 2013, 224(10): 1740
https://doi.org/10.1007/s11270-013-1740-9
35 Lin Z R, Zhao  L, Dong Y H. Quantitative characterization of hydroxyl radical generation in a goethite-catalyzed Fenton-like reaction. Chemosphere, 2015, 141: 7–12
https://doi.org/10.1016/j.chemosphere.2015.05.066 pmid: 26069944
36 Jing Y, Chaplin  B P. Mechanistic study of the validity of using hydroxyl radical probes to characterize electrochemical advanced oxidation processes. Environmental Science & Technology, 2017, 51(4): 2355–2365
https://doi.org/10.1021/acs.est.6b05513 pmid: 28072535
37 Fernández-Castro P,  Vallejo M,  Román M F S, et al.. Insight on the fundamentals of advanced oxidation processes. Role and review of the determination methods of reactive oxygen species. Journal of Chemical Technology and Biotechnology, 2015, 90(5): 796–820
https://doi.org/10.1002/jctb.4634
38 Tang C, Wang  Y, Long Y, et al.. Anchoring 20(R)-ginsenoside Rg3 onto cellulose nanocrystals to increase the hydroxyl radical scavenging activity. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 7507–7513
https://doi.org/10.1021/acssuschemeng.6b02996
39 Hassan H, Hameed  B H. Fe-clay as effective heterogeneous Fenton catalyst for the decolorization of Reactive Blue 4. Chemical Engineering Journal, 2011, 171(3): 912–918
https://doi.org/10.1016/j.cej.2011.04.040
40 McKay G, Rosario-Ortiz  F L. Temperature dependence of the photochemical formation of hydroxyl radical from dissolved organic matter. Environmental Science & Technology, 2015, 49(7): 4147–4154 
https://doi.org/10.1021/acs.est.5b00102 pmid: 25719947
41 Xu H Y, Prasad  M, Liu Y. Schorl: a novel catalyst in mineral-catalyzed Fenton-like system for dyeing wastewater discoloration. Journal of Hazardous Materials, 2009, 165(1–3): 1186–1192
https://doi.org/10.1016/j.jhazmat.2008.10.108 pmid: 19081181
42 Lu M C, Chen  J N, Huang  H H. Role of goethite dissolution in the oxidation of 2-chlorophenol with hydrogen peroxide. Chemosphere, 2002, 46(1): 131–136
https://doi.org/10.1016/S0045-6535(01)00076-5 pmid: 11806525
43 Kwan W P, Voelker  B M. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environmental Science & Technology, 2003, 37(6): 1150–1158
https://doi.org/10.1021/es020874g pmid: 12680668
44 Che H, Bae  S, Lee W. Degradation of trichloroethylene by Fenton reaction in pyrite suspension. Journal of Hazardous Materials, 2011, 185(2–3): 1355–1361
https://doi.org/10.1016/j.jhazmat.2010.10.055 pmid: 21071138
45 Andreozzi R, Caprio  V, Marotta R. Oxidation of 3,4-dihydroxy-benzoic acid by means of hydrogen peroxide in aqueous goethite slurry. Water Research, 2002, 36(11): 2761–2768
https://doi.org/10.1016/S0043-1354(01)00499-7 pmid: 12146863
46 Feng J, Hu  X, Yue P L. Novel bentonite clay-based Fe-nanocomposite as a heterogeneous catalyst for photo-Fenton discoloration and mineralization of Orange II. Environmental Science & Technology, 2004, 38(1): 269–275
https://doi.org/10.1021/es034515c pmid: 14740746
47 Xu L J, Wang  J L. Fenton-like degradation of 2,4-dichlorophenol using Fe3O4 magnetic nanoparticles. Applied Catalysis B: Environmental, 2012, 123–124: 117–126
https://doi.org/10.1016/j.apcatb.2012.04.028
[1] Huan-Yan XU, Yuan WANG, Tian-Nuo SHI, Hang ZHAO, Qu TAN, Bo-Chao ZHAO, Xiu-Lan HE, Shu-Yan QI. Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: combination mechanism and affecting parameters[J]. Front. Mater. Sci., 2018, 12(1): 21-33.
[2] Hang ZHAO,Ling WENG,Wei-Wei CUI,Xiao-Rui ZHANG,Huan-Yan XU,Li-Zhu LIU. In situ anchor of magnetic Fe3O4 nanoparticles onto natural maifanite as efficient heterogeneous Fenton-like catalyst[J]. Front. Mater. Sci., 2016, 10(3): 300-309.
[3] Huan-Yan XU,Tian-Nuo SHI,Hang ZHAO,Li-Guo JIN,Feng-Chun WANG,Chun-Yan WANG,Shu-Yan QI. Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: process optimization by response surface methodology[J]. Front. Mater. Sci., 2016, 10(1): 45-55.
[4] Hui-Yun ZHOU,Pei-Pei CAO,Jie ZHAO,Zhi-Ying WANG,Jun-Bo LI,Fa-Liang ZHANG. Release behavior and kinetic evaluation of berberine hydrochloride from ethyl cellulose/chitosan microspheres[J]. Front. Mater. Sci., 2014, 8(4): 373-382.
[5] Hui-Yun ZHOU, Ling-Juan JIANG, Yan-Ping ZHANG, Jun-Bo LI. β-Cyclodextrin inclusion complex: preparation, characterization, and its aspirin release in vitro[J]. Front Mater Sci, 2012, 6(3): 259-267.
[6] Jing-Jun XU, Mei-Shuan LI, Xue-Liang FANG, Zhong-Wei ZHANG, Zheng-Hui XU, Jun-Shan WANG, . A novel ultra-high temperature oxidation technique in flowing gas with controlled oxygen partial pressure[J]. Front. Mater. Sci., 2010, 4(3): 266-270.
[7] Ming-Tao RUN, Xin LI, Chen-Guang YAO, . Thermal degradation behavior and kinetic analysis of poly(L-lactide) in nitrogen and air atmosphere[J]. Front. Mater. Sci., 2010, 4(1): 78-83.
[8] Ming-tao RUN, Zeng-kun WANG, Xin LI, Hong-chi ZHAO, . Crystal morphology, mechanical property and non-isothermal crystallization kinetics of poly(trimethylene terephthalate)/maleinized poly(ethylene-octene) copolymer binary blends[J]. Front. Mater. Sci., 2009, 3(4): 386-394.
[9] Ming XIAO, Ke-min WANG, Gui-ping MA, Jun NIE. Synthesis and photopolymerization of 2-(acryloyloxy) ethyl bis (2-(acryloyloxy) ethyl)carbamate[J]. Front Mater Sci Chin, 2009, 3(3): 259-265.
[10] LI Zai-feng, LI Jin-yan, SUN Jian, SUN Bao-qun, WANG Jin-jing, SHEN Qiang. Investigation of kinetics and morphology development for polyurethane-urea extended by DMTDA[J]. Front. Mater. Sci., 2008, 2(2): 200-204.
[11] DAI Ming-zhi, XIAO Pu, NIE Jun. Synthesis and photopolymerization kinetics of a photoinitiator containing in-chain benzophenone and amine structure[J]. Front. Mater. Sci., 2008, 2(2): 194-199.
[12] LI Zai-feng, LI Jin-yan, YUAN Wei, SUN Bao-qun, ZHANG Fu-tao, WANG Zeng-lin. Investigation of effects of dibutyltin dilaurate on reaction injection molding polyurethane-urea kinetics, morphology and mechanical properties by FTIR[J]. Front. Mater. Sci., 2008, 2(1): 99-104.
[13] FANG Zhengping, WANG Jianguo, GU Aijuan, TONG Lifang. Curing behavior and kinetic analysis of epoxy resin/multi-walled carbon nanotubes composites[J]. Front. Mater. Sci., 2007, 1(4): 415-422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed