Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2016, Vol. 10 Issue (1) : 45-55    https://doi.org/10.1007/s11706-016-0326-z
RESEARCH ARTICLE
Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: process optimization by response surface methodology
Huan-Yan XU(),Tian-Nuo SHI,Hang ZHAO,Li-Guo JIN,Feng-Chun WANG,Chun-Yan WANG,Shu-Yan QI
School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
 Download: PDF(1252 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fe3O4/MWCNTs nanocomposites were prepared by chemical oxidation coprecipitation method and developed as highly efficient heterogeneous Fenton-like catalyst. XRD results revealed that Fe3O4 nanoparticles deposited onto MWCNTs surface remained the inverse spinel crystal structure of cubic Fe3O4 phase. The FTIR characteristic peaks of MWCNTs weakened or disappeared due to the anchor of Fe3O4 nanoparticles and Fe–O peak at 570 cm−1 was indicative of the formation of Fe3O4. TEM observation revealed that Fe3O4 nanoparticles were tightly anchored by MWCNTs. The Fenton-like catalytic activity of Fe3O4/MWCNTs nanocomposites for the discoloration of methyl orange (MO) was much higher than that of Fe3O4 nanoparticles. The process optimization of this heterogeneous Fenton-like system was implemented by response surface methodology (RSM). The optimum conditions for MO discoloration were determined to be of 12.3 mmol/L H2O2 concentration, 2.9 g/L catalyst dosage, solution pH 2.7 and 39.3 min reaction time, with the maximum predicted value for MO discoloration ratio of 101.85%. The corresponding experimental value under the identical conditions was obtained as 99.86%, which was very close to the predicted one with the absolute deviation of 1.99%.

Keywords Fe3O4/MWCNTs      Fenton-like catalyst      azo dye      response surface methodology     
Corresponding Author(s): Huan-Yan XU   
Online First Date: 29 December 2015    Issue Date: 15 January 2016
 Cite this article:   
Huan-Yan XU,Tian-Nuo SHI,Hang ZHAO, et al. Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: process optimization by response surface methodology[J]. Front. Mater. Sci., 2016, 10(1): 45-55.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-016-0326-z
https://academic.hep.com.cn/foms/EN/Y2016/V10/I1/45
Coded level Variables
Solution pH, X1 H2O2 concentration, X2 /(mmol·L−1) Catalyst dosage, X3 /(g·L−1) Reaction time, X4 /min
−2 1 9.69 1.0 10
−1 2 19.35 2.0 20
0 3 29.07 3.0 30
1 4 38.76 4.0 40
2 5 48.45 5.0 50
Tab.1  Variables and their codes and real experimental values used in CCD
Fig.1  XRD patterns of acid-treated MWCNTs, Fe3O4 nanoparticles and Fe3O4/MWCNTs nanocomposites.
Fig.2  FTIR spectra of acid-treated MWCNTs and Fe3O4/MWCNTs nanocomposites.
Fig.3  TEM images of (a) acid-treated MWCNTs and (b) Fe3O4/MWCNTs nanocomposites.
Fig.4  Contrast experiments of 50 mg/L MO discoloration at room temperature in Fe3O4–H2O2 system (pH= 2, [H2O2]0 = 19.38 mmol/L, Fe3O4 dosage= 2.0 g/L), Fe3O4/MWCNTs system (pH= 2, Fe3O4/MWCNTs dosage= 2.0 g/L), Fe3O4/MWCNTs–H2O2 system (pH= 2, [H2O2]0 = 19.38 mmol/L, Fe3O4/MWCNTs dosage= 2.0 g/L), MWCNTs system (pH= 2, MWCNTs dosage= 2.0 g/L), MWCNTs–H2O2 system (pH= 2, [H2O2]0 = 19.38 mmol/L, MWCNTs dosage= 2.0 g/L) and Fe3O4 system (pH= 2, Fe3O4 dosage= 2.0 g/L).
Run X1 X2 X3 X4 MO discoloration ratio, Y /%
Experimental Predicted
1 0 2 0 0 63.35 64.91
2 0 0 0 −2 15.09 15.32
3 0 0 0 0 89.73 89.20
4 1 −1 −1 −1 38.10 35.95
5 1 1 1 1 86.77 84.16
6 −1 1 −1 1 74.57 70.23
7 1 −1 1 1 97.48 98.32
8 0 −2 0 0 92.77 90.55
9 2 0 0 0 79.98 78.99
10 −1 −1 −1 1 85.68 84.59
11 −1 1 1 −1 85.43 82.48
12 1 1 −1 −1 11.67 8.94
13 −1 1 1 1 98.42 102.61
14 0 0 0 0 90.42 89.20
15 1 −1 1 −1 69.88 72.84
16 −1 −1 1 1 98.98 100.78
17 1 1 −1 1 63.99 66.07
18 0 0 0 0 88.76 89.20
19 0 0 0 0 89.18 89.20
20 −1 1 −1 −1 13.92 15.11
21 0 0 2 0 92.08 88.76
22 −1 −1 −1 −1 25.34 26.58
23 0 0 0 2 96.79 95.91
24 0 0 0 0 90.42 89.20
25 −1 −1 1 −1 77.82 77.77
26 0 0 0 0 86.70 89.20
27 0 0 -2 0 16.83 19.49
28 −2 0 0 0 87.73 88.06
29 1 1 1 −1 58.44 61.57
30 1 −1 −1 1 94.85 96.42
Tab.2  Central composite design matrix along with the experimental and predicted values of MO discoloration ratio
Source Sum of squares Degree of freedom Mean square F value p-value(Prob>F)
Model 23580.71 14 1684.34 184.14 <0.0001 Significant
X1 123.67 1 123.67 13.52 0.0022
X2 985.09 1 985.09 107.69 <0.0001
X3 7196.81 1 7196.81 786.79 <0.0001
X4 9742.12 1 9742.12 1065.05 <0.0001
X1X2 255.68 1 255.68 27.95 <0.0001
X1X3 204.35 1 204.35 22.34 0.0003
X1X4 6.08 1 6.08 0.66 0.4278
X2X3 261.79 1 261.79 28.62 <0.0001
X2X4 8.35 1 8.35 0.91 0.3544
X3X4 1224.65 1 1224.65 133.88 <0.0001
X12 55.23 1 55.23 6.04 0.0267
X22 225.57 1 225.57 24.66 0.0002
X32 2109.11 1 2109.11 230.58 <0.0001
X42 1934.30 1 1934.30 211.47 <0.0001
Residual 137.21 15 9.15
R2 0.9942
Adj R2 0.9888
Tab.3  ANOVA for the obtained quadratic polynomial model
Fig.5  Predicted vs. actual values plot for MO discoloration.
Fig.6  Normal plot of residuals for MO discoloration.
Fig.7  The 3D response surface diagram of MO discoloration as the interaction of solution pH (X1) and H2O2 concentration (X2).
Fig.8  The 3D response surface diagram of MO discoloration as the interaction of solution pH (X1) and catalyst dosage (X3).
Fig.9  The 3D response surface diagram of MO discoloration as the interaction of solution pH (X1) and reaction time (X4).
Fig.10  The 3D response surface diagram of MO discoloration as the interaction of H2O2 concentration (X2) and catalyst dosage (X3).
Fig.11  The 3D response surface diagram of MO discoloration as the interaction of H2O2 concentration (X2) and reaction time (X4).
Fig.12  The 3D response surface diagram of MO discoloration as the interaction of catalyst dosage (X3) and reaction time (X4).
3Dthree-dimensional
ANOVAanalysis of variance
AOPadvanced oxidation process
ATZatrazine
BPAbisphenol A
CCDcentral composite design
CNTcarbon nanotube
EDCendocrine disrupting compound
FTIRFourier transform infrared spectroscopy
MOmethyl orange
MT17α-methyltestosterone
MWCNTmulti-walled carbon nanotube
RSMresponse surface methodology
SWCNTsingle-walled carbon nanotube
TBBPAtetrabromobisphenol A
TEMtransmission electron microscopy
UVultraviolet
XRDX-ray diffraction
Tab.1  
1 Konstantinou  I K, Albanis  T A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations – A review. Applied Catalysis B: Environmental, 2004, 49(1): 1–14
2 Das  L, Chatterjee  S, Naik  D B, . Role of surfactant derived intermediates in the efficacy and mechanism for radiation chemical degradation of a hydrophobic azo dye, 1-phenylazo-2-naphthol. Journal of Hazardous Materials, 2015, 298: 19–27
3 Das  D, Dutta  R K. A novel method of synthesis of small band gap SnS nanorods and its efficient photocatalytic dye degradation. Journal of Colloid and Interface Science, 2015, 457: 339–344
4 Nie  Y, Zhang  L, Li  Y-Y, . Enhanced Fenton-like degradation of refractory organic compounds by surface complex formation of LaFeO3 and H2O2. Journal of Hazardous Materials, 2015, 294: 195–200
5 Chen  H, Zhang  Z L, Yang  Z L, . Heterogeneous Fenton-like catalytic degradation of 2,4-dichlorophenoxyacetic acid in water with FeS. Chemical Engineering Journal, 2015, 273: 481–489
6 Xue  X, Hanna  K, Deng  N. Fenton-like oxidation of rhodamine B in the presence of two types of iron (II, III) oxide. Journal of Hazardous Materials, 2009, 166(1): 407–414
7 Rusevova  K, Kopinke  F D, Georgi  A. Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions – Influence of Fe(II)/Fe(III) ratio on catalytic performance. Journal of Hazardous Materials, 2012, 241-242: 433–440
8 Xu  L J, Wang  J L. Fenton-like degradation of 2,4-dichlorophenol using Fe3O4 magnetic nanoparticles. Applied Catalysis B: Environmental, 2012, 123-124: 117–126
9 Gao  L, Zhuang  J, Nie  L, . Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2007, 2(9): 577–583
10 Wan  D, Li  W B, Wang  G H, . Adsorption and heterogeneous degradation of rhodamine B on the surface of magnetic bentonite material. Applied Surface Science, 2015, 349: 988–996
11 Hammouda  S B, Adhoum  N, Monser  L. Synthesis of magnetic alginate beads based on Fe3O4 nanoparticles for the removal of 3-methylindole from aqueous solution using Fenton process. Journal of Hazardous Materials, 2015, 294: 128–136
12 Seyed Dorraji  M S, Mirmohseni  A, Carraro  M, . Fenton-like catalytic activity of wet-spun chitosan hollow fibers loaded with Fe3O4 nanoparticles: Batch and continuous flow investigations. Journal of Molecular Catalysis A: Chemical, 2015, 398: 353–357
13 Cleveland  V, Bingham  J P, Kan  E. Heterogeneous Fenton degradation of bisphenol A by carbon nanotube-supported Fe3O4. Separation and Purification Technology, 2014, 133: 388–395
14 Deng  J H, Wen  X H, Wang  Q N. Solvothermal in situ synthesis of Fe3O4-multiwalled carbon nanotubes with enhanced heterogeneous Fenton-like activity. Materials Research Bulletin, 2012, 47(11): 3369–3376
15 Hu  X B, Deng  Y H, Gao  Z Q, . Transformation and reduction of androgenic activity of 17α-methyltestosterone in Fe3O4/MWCNTs–H2O2 system. Applied Catalysis B: Environmental, 2012, 127: 167–174
16 Zhou  L C, Zhang  H, Ji  L Q, . Fe3O4/MWCNT as a heterogeneous Fenton catalyst: degradation pathways of tetrabromobisphenol A. RSC Advances, 2014, 4(47): 24900–24908
17 Yu  L, Yang  X F, Ye  Y S, . Efficient removal of atrazine in water with a Fe3O4/MWCNTs nanocomposite as a heterogeneous Fenton-like catalyst. RSC Advances, 2015, 5(57): 46059–46066
18 Tristão  J C, de Mendonça  F G, Lago  R M, . Controlled formation of reactive Fe particles dispersed in a carbon matrix active for the oxidation of aqueous contaminants with H2O2. Environmental Science and Pollution Research International, 2015, 22(2): 856–863
19 Zhang  J K, Wang  G J, Zhang  L P, . Catalytic oxidative desulfurization of benzothiophene with hydrogen peroxide catalyzed by Fenton-like catalysts. Reaction Kinetics, Mecha-nisms and Catalysis, 2014, 113(2): 347–360
20 Hua  Z, Ma  W, Bai  X, . Heterogeneous Fenton degradation of bisphenol A catalyzed by efficient adsorptive Fe3O4/GO nanocomposites. Environmental Science and Pollution Research International, 2014, 21(12): 7737–7745
21 Zubir  N A, Yacou  C, Motuzas  J, . The sacrificial role of graphene oxide in stabilising a Fenton-like catalyst GO–Fe3O4. Chemical Communications, 2015, 51(45): 9291–9293
22 Zubir  N A, Zhang  X W, Yacou  C, . Fenton-like degradation of acid Orange 7 using graphene oxide–iron oxide nanocomposite. Science of Advanced Materials, 2014, 6(7): 1382–1388
23 Buang  N A, Fadil  F, Majid  Z A, . Characteristic of mild acid functionalized multiwalled carbon nanotubes towards high dispersion with low structural defects. Digest Journal of Nanomaterials and Biostructures, 2012, 7: 33–39
24 Aboutalebi  S H, Chidembo  A T, Salari  M, . Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy & Environmental Science, 2011, 4(5): 1855–1865
25 Gulkaya  I, Surucu  G A, Dilek  F B. Importance of H2O2/Fe2+ ratio in Fenton’s treatment of a carpet dyeing wastewater. Journal of Hazardous Materials, 2006, 136(3): 763–769
26 GilPavas  E, Dobrosz-Gómez  I, Gómez-García  M Á. Decolorization and mineralization of Diarylide Yellow 12 (PY12) by photo-Fenton process: the Response Surface Methodology as the optimization tool. Water Science and Technology, 2012, 65(10): 1795–1800
27 Khataee  A R, Safarpour  M, Zarei  M, . Combined heterogeneous and homogeneous photodegradation of a dye using immobilized TiO2 nanophotocatalyst and modified graphite electrode with carbon nanotubes. Journal of Molecular Catalysis A: Chemical, 2012, 363–364: 58–68
28 Ghanbarzadeh Lak  M, Sabour  M R, Amiri  A, . Application of quadratic regression model for Fenton treatment of municipal landfill leachate. Waste Management, 2012, 32(10): 1895–1902
29 Cao  M S, Yang  J, Song  W L, . Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Applied Materials & Interfaces, 2012, 4(12): 6949–6956
30 Chen  Y X, Gu  H C. Microwave assisted fast fabrication of Fe3O4–MWCNTs nanocomposites and their application as MRI contrast agents. Materials Letters, 2012, 67(1): 49–51
31 Hu  X B, Liu  B Z, Deng  Y H, . Adsorption and heterogeneous Fenton degradation of 17α-methyltestosterone on nano Fe3O4/MWCNTs in aqueous solution. Applied Catalysis B: Environmental, 2011, 107(3–4): 274–283
32 Chen  J H, Lu  D Q, Chen  B, . Removal of U(VI) from aqueous solutions by using MWCNTs and chitosan modified MWCNTs. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295(3): 2233–2241
33 Abdullahi  N, Saion  E, Shaari  A H, . Optimisation of the photonic efficiency of TiO2 decorated on MWCNTs for Methylene Blue photodegradation. PLoS ONE, 2015, 10(5): e0125511
34 Stobinski  L, Lesiak  B, Kövér  L, . Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. Journal of Alloys and Compounds, 2010, 501(1): 77–84
35 Wang  J, Li  Z, Li  S, . Adsorption of Cu(II) on oxidized multi-walled carbon nanotubes in the presence of hydroxylated and carboxylated fullerenes. PLoS ONE, 2013, 8(8): e72475
36 Xiao  D L, Dramou  P, He  H, . Magnetic carbon nanotubes: synthesis by a simple solvothermal process and application in magnetic targeted drug delivery system. Journal of Nanoparticle Research, 2012, 14(7): 984–995
37 Azami  M, Bahram  M, Nouri  S, . A central composite design for the optimization of the removal of the azo dye, methyl orange, from waste water using the Fenton reaction. Journal of the Serbian Chemical Society, 2012, 77(2): 235–246
38 Idel-aouad  R, Valiente  M, Yaacoubi  A, . Rapid decolourization and mineralization of the azo dye C.I. Acid Red 14 by heterogeneous Fenton reaction. Journal of Hazardous Materials, 2011, 186(1): 745–750
39 Xu  H Y, Shi  T N, Wu  L C, . Discoloration of methyl orange in the presence of schorl and H2O2: Kinetics and mechanism. Water, Air, and Soil Pollution, 2013, 224(10): 1740
[1] Huan-Yan XU, Yuan WANG, Tian-Nuo SHI, Hang ZHAO, Qu TAN, Bo-Chao ZHAO, Xiu-Lan HE, Shu-Yan QI. Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: combination mechanism and affecting parameters[J]. Front. Mater. Sci., 2018, 12(1): 21-33.
[2] Hang ZHAO,Ling WENG,Wei-Wei CUI,Xiao-Rui ZHANG,Huan-Yan XU,Li-Zhu LIU. In situ anchor of magnetic Fe3O4 nanoparticles onto natural maifanite as efficient heterogeneous Fenton-like catalyst[J]. Front. Mater. Sci., 2016, 10(3): 300-309.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed