Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2018, Vol. 12 Issue (1) : 21-33    https://doi.org/10.1007/s11706-018-0408-1
RESEARCH ARTICLE
Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: combination mechanism and affecting parameters
Huan-Yan XU(), Yuan WANG, Tian-Nuo SHI, Hang ZHAO, Qu TAN, Bo-Chao ZHAO, Xiu-Lan HE, Shu-Yan QI
School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
 Download: PDF(702 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Multi-walled carbon nanotubes (MWCNTs) can act not only as a support for Fe3O4 nanoparticles (NPs) but also as a coworker with synergistic effect, accordingly improving the heterogeneous Fenton-like efficiency of Fe3O4 NPs. In this study, Fe3O4 NPs were in situ anchored onto MWCNTs by a moderate co-precipitation method and the as-prepared Fe3O4/MWCNTs nanocomposites were employed as the highly efficient Fenton-like catalysts. The analyses of XRD, FTIR, Raman, FESEM, TEM and HRTEM results indicated the formation of Fe3O4 crystals in Fe3O4/MWCNTs nanocomposites prepared at different conditions and the interaction between Fe3O4 NPs and MWCNTs. Over a wide pH range, the surface of modified MWCNTs possessed negative charges. Based on these results, the possible combination mechanism between Fe3O4 NPs and MWCNTs was discussed and proposed. Moreover, the effects of preparation and catalytic conditions on the Fenton-like catalytic efficiency were investigated in order to gain further insight into the heterogeneous Fenton-like reaction catalyzed by Fe3O4/MWCNTs nanocomposites.

Keywords MWCNTs      Fe3O4 NPs      Fenton-like catalyst      combination mechanism      affecting parameters     
Corresponding Author(s): Huan-Yan XU   
Online First Date: 11 January 2018    Issue Date: 07 March 2018
 Cite this article:   
Huan-Yan XU,Yuan WANG,Tian-Nuo SHI, et al. Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: combination mechanism and affecting parameters[J]. Front. Mater. Sci., 2018, 12(1): 21-33.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-018-0408-1
https://academic.hep.com.cn/foms/EN/Y2018/V12/I1/21
Fig.1  XRD patterns: (a) modified MWCNTs, Fe3O4 NPs, and Fe3O4/MWCNTs nanocomposites with different MWCNTs contents; (b) Fe3O4/MWCNTs nanocomposites prepared at different temperatures; (c) Fe3O4/MWCNTs nanocomposites prepared with different reaction times.
Fig.2  FTIR spectra of Fe3O4 NPs, MWCNTs, modified MWCNTs, and Fe3O4/MWCNTs nanocomposite (FC-20CW).
Fig.3  Raman spectra of Fe3O4 NPs, MWCNTs, modified MWCNTs, and Fe3O4/MWCNTs nanocomposite (FC-20CW).
Fig.4  FESEM images of MWCNTs, modified MWCNTs, Fe3O4 NPs, and Fe3O4/MWCNTs nanocomposites prepared at different conditions.
Fig.5  (a) TEM and (b) HRTEM images of modified MWCNTs, (c) TEM image of Fe3O4 NPs, and (d) TEM image of Fe3O4/MWCNTs nanocomposite (inset: SAED of Fe3O4 NPs anchored onto MWCNTs).
Fig.6  Zeta potentials of modified MWCNTs at different pH values.
Fig.7  Combination mechanism between modified MWCNTs and Fe3O4 NPs.
Fig.8  Effect of MWCNTs content on Fenton-like efficiency of Fe3O4/MWCNTs nanocomposite.
Fig.9  Effect of water-bath temperature on Fenton-like efficiency of Fe3O4/MWCNTs nanocomposite.
Fig.10  Effect of water-bath time on Fenton-like efficiency of Fe3O4/MWCNTs nanocomposite.
Fig.11  Effect of solution pH on Fenton-like efficiency of Fe3O4/MWCNTs nanocomposite.
Fig.12  Effect of H2O2 concentration on Fenton-like efficiency of Fe3O4/MWCNTs nanocomposite.
Fig.13  Effect of catalyst dosage on Fenton-like efficiency of Fe3O4/MWCNTs nanocomposite.
Fig.14  Effect of catalytic temperature on Fenton-like efficiency of Fe3O4/MWCNTs nanocomposite.
Fig.15  Effect of initial MO concentration on Fenton-like efficiency of Fe3O4/MWCNTs nanocomposite.
1 Cai Z Q, Sun  Y M, Liu  W, et al.. An overview of nanomaterials applied for removing dyes from wastewater. Environmental Science and Pollution Research International, 2017, 24(19): 15882–15904
https://doi.org/10.1007/s11356-017-9003-8
2 Freyria F S, Armandi  M, Compagnoni M, et al.. Catalytic and photocatalytic processes for the abatement of N-containing pollutants from wastewater. Part 2: organic pollutants. Journal of Nanoscience and Nanotechnology, 2017, 17(6): 3654–3672
https://doi.org/10.1166/jnn.2017.14014
3 Holkar C R, Jadhav  A J, Pinjari  D V, et al.. A critical review on textile wastewater treatments: possible approaches. Journal of Environmental Management, 2016, 182: 351–366
https://doi.org/10.1016/j.jenvman.2016.07.090
4 Quadrado R F N,  Fajardo A R. Fast decolorization of azo methyl orange via heterogeneous Fenton and Fenton-like reactions using alginate-Fe2+/Fe3+ films as catalysts. Carbohydrate Polymers, 2017, 177: 443–450
https://doi.org/10.1016/j.carbpol.2017.08.083
5 Feng J X, Li  S Y, Sheng  Y, et al.. Remarkable improvement of cycling Fenton process for catalytic degradation of phenol: tuning of triggering effect. Applied Catalysis A: General, 2017, 542: 21–27
https://doi.org/10.1016/j.apcata.2017.05.009
6 Clarizia L, Russo  D, Somma D I, et al.. Homogeneous photo-Fenton processes at near neutral pH: a review. Applied Catalysis B: Environmental, 2017, 209: 358–371
https://doi.org/10.1016/j.apcatb.2017.03.011
7 Mirzaei A, Chen  Z, Haghighat F, et al.. Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes: a review. Chemosphere, 2017, 174: 665–688
https://doi.org/10.1016/j.chemosphere.2017.02.019
8 Teixeira A P C,  Tristão J C,  Araujo M H, et al.. Iron: a versatile element to produce materials for environmental applications. Journal of the Brazilian Chemical Society, 2012, 23(9): 1579–1593
https://doi.org/10.1590/S0103-50532012005000039
9 Yang S, Wu  P, Yang Q, et al.. Regeneration of iron-montmorillonite adsorbent as an efficient heterogeneous Fenton catalytic for degradation of Bisphenol A: structure, performance and mechanism. Chemical Engineering Journal, 2017, 328: 737–747
https://doi.org/10.1016/j.cej.2017.07.093
10 Abass O K, Zhuo  M S, Zhang  K S. Concomitant degradation of complex organics and metals recovery from fracking wastewater: roles of nanozerovalent iron initiated oxidation and adsorption. Chemical Engineering Journal, 2017, 328: 159–171
https://doi.org/10.1016/j.cej.2017.07.030
11 Zhong Y H, Yu  L, Chen Z F, et al.. Microwave-assisted synthesis of Fe3O4 nanocrystals with predominantly exposed facets and their heterogeneous UVA/Fenton catalytic activity. ACS Applied Materials & Interfaces, 2017, 9(34): 29203–29212
https://doi.org/10.1021/acsami.7b06925
12 Liu Y Y, Jin  W, Zhao Y P, et al.. Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions. Applied Catalysis B: Environmental, 2017, 206: 642–652
https://doi.org/10.1016/j.apcatb.2017.01.075
13 Wang Y, Fang  J S, Crittenden  J C, et al.. Novel RGO/α-FeOOH supported catalyst for Fenton oxidation of phenol at a wide pH range using solar-light-driven irradiation. Journal of Hazardous Materials, 2017, 329: 321–329 doi:10.1016/j.jhazmat.2017.01.041
14 Xiao F, Li  W T, Fang  L P, et al.. Synthesis of akageneite (β-FeOOH)/reduced graphene oxide nanocomposites for oxidative decomposition of 2-chlorophenol by Fenton-like reaction. Journal of Hazardous Materials, 2016, 308: 11–20
https://doi.org/10.1016/j.jhazmat.2016.01.011
15 Xu L J, Wang  J L. Fenton-like degradation of 2,4-dichlorophenol using Fe3O4 magnetic nanoparticles. Applied Catalysis B: Environmental, 2012, 123‒124: 117–126
https://doi.org/10.1016/j.apcatb.2012.04.028
16 Rusevova K, Kopinke  F D, Georgi  A. Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions: influence of Fe(II)/Fe(III) ratio on catalytic performance. Journal of Hazardous Materials, 2012, 241‒242: 433–440
https://doi.org/10.1016/j.jhazmat.2012.09.068
17 Li K Y, Zhao  Y Q, Song  C S, et al.. Magnetic ordered mesoporous Fe3O4/CeO2 composites with synergy of adsorption and Fenton catalysis. Applied Surface Science, 2017, 425: 526–534
https://doi.org/10.1016/j.apsusc.2017.07.041
18 Haber F, Weiss  J. The catalytic decomposition of hydrogen peroxide by iron salts. Proceedings of the Royal Society, 1934, 147(861): 332–351
https://doi.org/10.1098/rspa.1934.0221
19 Ribeiro R S, Silva  A M T, Tavares  P B, et al.. Hybrid magnetic graphitic nanocomposites for catalytic wet peroxide oxidation applications. Catalysis Today, 2017, 280: 184–191
https://doi.org/10.1016/j.cattod.2016.04.040
20 Tian X, Jin  H, Nie Y, et al.. Heterogeneous Fenton-like degradation of ofloxacin over a wide pH range of 3.6‒10.0 over modified mesoporous iron oxide. Chemical Engineering Journal, 2017, 328: 397–405
https://doi.org/10.1016/j.cej.2017.07.049
21 Tang X K, Feng  Q M, Liu  K, et al.. Fabrication of magnetic Fe3O4/silica nanofiber composites with enhanced Fenton-like catalytic performance for Rhodamine B degradation. Journal of Materials Science, 2018, 53(1): 369–384
https://doi.org/10.1007/s10853-017-1490-y
22 Zhou Z Y, Su  M H, Shih  K M. Highly efficient and recyclable graphene oxide‒magnetite composites for isatin mineralization. Journal of Alloys and Compounds, 2017, 725: 302–309
https://doi.org/10.1016/j.jallcom.2017.07.087
23 Xu H Y, Shi  T N, Zhao  H, et al.. Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: process optimization by response surface methodology. Frontiers of Materials Science, 2016, 10(1): 45–55
https://doi.org/10.1007/s11706-016-0326-z
24 Jafari A J, Kakavandi  B, Jaafarzadeh N, et al.. Fenton-like catalytic oxidation of tetracycline by AC@Fe3O4 as a heterogeneous persulfate activator: adsorption and degradation studies. Journal of Industrial and Engineering Chemistry, 2017, 45: 323–333
https://doi.org/10.1016/j.jiec.2016.09.044
25 Zhao H, Weng  L, Cui W W, et al.. In situ anchor of magnetic Fe3O4 nanoparticles onto natural maifanite as efficient heterogeneous Fenton-like catalyst. Frontiers of Materials Science, 2016, 10(3): 300–309
https://doi.org/10.1007/s11706-016-0346-8
26 Wan D, Wang  G H, Li  W B, et al.. Investigation into the morphology and structure of magnetic bentonite nanocomposites with their catalytic activity. Applied Surface Science, 2017, 413: 398–407
https://doi.org/10.1016/j.apsusc.2017.03.265
27 Ribeiro R S, Silva  A M T, Figueiredo  J L, et al.. Catalytic wet peroxide oxidation: a route towards the application of hybrid magnetic carbon nanocomposites for the degradation of organic pollutants. A review. Applied Catalysis B: Environmental, 2016, 187: 428–460
https://doi.org/10.1016/j.apcatb.2016.01.033
28 Deng J H, Wen  X H, Wang  Q N. Solvothermal in situ synthesis of Fe3O4‒multiwalled carbon nanotubes with enhanced heterogeneous Fenton-like activity. Materials Research Bulletin, 2012, 47(11): 3369–3376
https://doi.org/10.1016/j.materresbull.2012.07.021
29 Tian X, Liu  Y, Chi W, et al.. Catalytic degradation of phenol and p-nitrophenol using Fe3O4/MWCNT nanocomposites as heterogeneous Fenton-like catalyst. Water, Air, and Soil Pollution, 2017, 228(8): 297
https://doi.org/10.1007/s11270-017-3485-3
30 Aboutalebi S H,  Chidembo A T,  Salari M, et al.. Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy & Environmental Science, 2011, 4(5): 1855–1865
https://doi.org/10.1039/c1ee01039e
31 Hu X B, Liu  B Z, Deng  Y H, et al.. Adsorption and heterogeneous Fenton degradation of 17α-methyltestosterone on nano Fe3O4/MWCNTs in aqueous solution. Applied Catalysis B: Environmental, 2011, 107(3‒4): 274–283
https://doi.org/10.1016/j.apcatb.2011.07.025
32 Xu H Y, Zheng  Z, Mao G J. Enhanced photocatalytic discoloration of acid fuchsine wastewater by TiO2/schorl composite catalyst. Journal of Hazardous Materials, 2010, 175(1‒3): 658–665
https://doi.org/10.1016/j.jhazmat.2009.10.059
33 Zubir N A, Motuzas  J, Yacou C, et al.. Graphene oxide with zinc partially substituted magnetite (GO-Fe1−xZnxOy) for the UV-assisted heterogeneous Fenton-like reaction. RSC Advances, 2016, 6(50): 44749–44757
https://doi.org/10.1039/C6RA04068C
34 Wang X, Zhao  Z, Qu J, et al.. Fabrication and characterization of magnetic Fe3O4‒CNT composites. Journal of Physics and Chemistry of Solids, 2010, 71(4): 673–676
https://doi.org/10.1016/j.jpcs.2009.12.063
35 Wang H, Jiang  H, Wang S, et al.. Fe3O4‒MWCNT magnetic nanocomposites as efficient peroxidase mimic catalysts in a Fenton-like reaction for water purification without pH limitation. RSC Advances, 2014, 4(86): 45809–45815
https://doi.org/10.1039/C4RA07327D
36 Stobinski L, Lesiak  B, Kövér L, et al.. Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. Journal of Alloys and Compounds, 2010, 501(1): 77–84
https://doi.org/10.1016/j.jallcom.2010.04.032
37 Song S, Rao  R, Yang H, et al.. Facile synthesis of Fe3O4/MWCNTs by spontaneous redox and their catalytic performance. Nanotechnology, 2010, 21(18): 185602
https://doi.org/10.1088/0957-4484/21/18/185602
38 Yu L, Yang  X, Ye Y, et al.. Efficient removal of atrazine in water with a Fe3O4/MWCNTs nanocomposite as a heterogeneous Fenton-like catalyst. RSC Advances, 2015, 5(57): 46059–46066
https://doi.org/10.1039/C5RA04249F
39 Shamsudin M S,  Asli N A,  Abdullah S, et al.. Effect of synthesis temperature on the growth iron-filled carbon nanotubes as evidenced by structural, micro-Raman, and thermogravimetric analyses. Advances in Condensed Matter Physics, 2012, 420619 (7 pages) doi.org/10.1155/2012/420619
40 Chen G, Futaba  D N, Sakurai  S, et al.. Interplay of wall number and diameter on the electrical conductivity of carbon nanotube thin films. Carbon, 2014, 67: 318–325
https://doi.org/10.1016/j.carbon.2013.10.001
41 Futaba D N, Yamada  T, Kobashi K, et al.. Macroscopic wall number analysis of single-walled, double-walled, and few-walled carbon nanotubes by X-ray diffraction. Journal of the American Chemical Society, 2011, 133(15): 5716–5719
https://doi.org/10.1021/ja2005994
42 Kim B, Sigmund  W M. Functionalized multiwall carbon nanotube/gold nanoparticle composites. Langmuir, 2004, 20(19): 8239–8242
https://doi.org/10.1021/la049424n
43 Li D, Müller  M B, Gilje  S, et al.. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 2008, 3(2): 101–105
https://doi.org/10.1038/nnano.2007.451
44 Iida H, Takayanagi  K, Nakanishi T, et al.. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. Journal of Colloid and Interface Science, 2007, 314(1): 274–280
https://doi.org/10.1016/j.jcis.2007.05.047
45 Cheng Z P, Chu  X Z, Yin  J Z, et al.. Surfactantless synthesis of Fe3O4 magnetic nanobelts by a simple hydrothermal process. Materials Letters, 2012, 75: 172–174
https://doi.org/10.1016/j.matlet.2012.02.029
46 Zhang J, Liu  G D, Wang  P H, et al.. Facile synthesis of FeOCl/iron hydroxide hybrid nanosheets: enhanced catalytic activity as a Fenton-like catalyst. New Journal of Chemistry, 2017, 41(18): 10339–10346
https://doi.org/10.1039/C7NJ01993A
47 Hassan H, Hameed  B H. Fe-clay as effective heterogeneous Fenton catalyst for the decolorization of Reactive Blue 4. Chemical Engineering Journal, 2011, 171(3): 912–918
https://doi.org/10.1016/j.cej.2011.04.040
48 Xu H Y, Prasad  M, Liu Y. Schorl: a novel catalyst in mineral-catalyzed Fenton-like system for dyeing wastewater discoloration. Journal of Hazardous Materials, 2009, 165(1‒3): 1186–1192
https://doi.org/10.1016/j.jhazmat.2008.10.108
49 Kwan W P, Voelker  B M. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environmental Science & Technology, 2003, 37(6): 1150–1158
https://doi.org/10.1021/es020874g
50 Feng J, Hu  X, Yue P L. Novel bentonite clay-based Fe-nanocomposite as a heterogeneous catalyst for photo-Fenton discoloration and mineralization of Orange II. Environmental Science & Technology, 2004, 38(1): 269–275
https://doi.org/10.1021/es034515c
[1] Huan-Yan XU, Yuan WANG, Tian-Nuo SHI, Hang ZHAO, Qu TAN, Bo-Chao ZHAO, Xiu-Lan HE, Shu-Yan QI. Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: kinetics and Fenton-like mechanism[J]. Front. Mater. Sci., 2018, 12(1): 34-44.
[2] Hang ZHAO,Ling WENG,Wei-Wei CUI,Xiao-Rui ZHANG,Huan-Yan XU,Li-Zhu LIU. In situ anchor of magnetic Fe3O4 nanoparticles onto natural maifanite as efficient heterogeneous Fenton-like catalyst[J]. Front. Mater. Sci., 2016, 10(3): 300-309.
[3] Huan-Yan XU,Tian-Nuo SHI,Hang ZHAO,Li-Guo JIN,Feng-Chun WANG,Chun-Yan WANG,Shu-Yan QI. Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: process optimization by response surface methodology[J]. Front. Mater. Sci., 2016, 10(1): 45-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed