Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2019, Vol. 13 Issue (4) : 352-366    https://doi.org/10.1007/s11706-019-0481-0
RESEARCH ARTICLE
Influence of temperature on preparing mesoporous mixed phase N/TiO2 nanocomposite with enhanced solar light photocatalytic activity
Elias ASSAYEHEGN1,2,3(), Ananthakumar SOLAIAPPAN1, Yonas CHEBUDIE4, Esayas ALEMAYEHU5()
1. Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-695019, India
2. National Centre for Catalysis Research, and Department of Chemistry, Indian Institute of Technology (IIT)-Madras, Chennai-600036, India
3. Faculty of Materials Science and Engineering, Jimma University, P.O. Box 378, Jimma, Ethiopia
4. Department of Chemistry, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
5. Faculty of Civil and Environmental Engineering, Jimma University, Jimma, P.O. Box 378, Ethiopia
 Download: PDF(2157 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nitrogen-doped titanium dioxide (N/TiO2) nanophotocatalysts were successfully synthesized in the presence of environmentally benign nitrogen dopant source, guanidinium chloride, by the sol–gel method. The effect of calcination temperature (300–600 °C) on their physicochemical properties was investigated by means XRD, XPS, FESEM, HRTEM, Raman spectroscopy, UV-vis DRS, PL and BET. Moreover, their photocatalytic activities were evaluated against rhodamine B (RhB) degradation under direct sun light. Results showed that the crystal phase of spheroidal N/TiO2 nanoparticles was changed from anatase (300 °C) to rutile (600 °C) via an intermediate anatase/rutile (A/R) mixed phase (400–500 °C), and the RhB photodegradation performance was increased with the decrease of the calcination temperature. Notably, N/TiO2 prepared at 400 °C demonstrated the best degradation performance (99%) after 5 h irradiation. The enhanced performance with high photostability was mainly attributed to its higher surface area and pore volume, stronger light absorption, and lower recombination rate. Such nanomaterials have practical applications for environmental remediation.

Keywords nitrogen doping      TiO2      rhodamine B      mixed photocatalyst      guanidinium chloride     
Corresponding Author(s): Elias ASSAYEHEGN,Esayas ALEMAYEHU   
Online First Date: 19 November 2019    Issue Date: 04 December 2019
 Cite this article:   
Elias ASSAYEHEGN,Ananthakumar SOLAIAPPAN,Yonas CHEBUDIE, et al. Influence of temperature on preparing mesoporous mixed phase N/TiO2 nanocomposite with enhanced solar light photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 352-366.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-019-0481-0
https://academic.hep.com.cn/foms/EN/Y2019/V13/I4/352
Sample n(Ti(OBu)4) /mmol n(GUA) /mmol Temperature/°C Phase composition/% Crystal size/nm
Anatase Rutile Anatase (1 0 1) Rutile (1 1 0)
N-0 11.4 0 400 96 4 9.3 ?
N-300 11.4 300 94 6 8.5 ?
N-400 400 53 44 10.2 36.3
N-500 500 48 52 23.5 42.6
N-600 600 ? 100 ? 86.3
Tab.1  Synthesis parameters and summaries of XRD results of as-obtained photocatalysts
Fig.1  (a) XRD of as obtained nanomaterials: N-0 (i); N-300 (ii); N-400 (iii); N-500 (iv); N-600 (v). (b) Raman spectra of N-400, N-500 and N-600.
Fig.2  FESEM images of N/TiO2: (a) N-300, (b) N-400, (c) N-500 and (d) N-600. HRTEM images of (e)(f) N-400.
Fig.3  (a) N2 sorption isotherms and (b) pore-size distribution plots of as-obtained N/TiO2.
Sample SBET/(m2·g−1) Vp/(cm3·g−1) Pore size/Å Eg/eV
N-0 84 0.134 28.2 3.08
N-300 103 0.140 19.2 3.07
N-400 80 0.164 28.1 2.91
N-500 22 0.078 45.3 2.96
N-600 5 0.033 79.6 2.95
Tab.2  Specific surface area, pore structure and band gap energy of as-obtained TiO2
Fig.4  (a) DRS spectra (with inset photographs of N-0 and N-400), (b) Kubelka?Munk plot and (c) PL spectra of as-obtained TiO2 and N/TiO2 nanomaterials.
Fig.5  (a) XPS survey spectra, (b) Ti 2p spectra, and (c) N 1s spectra of N-0 and N-400.
Fig.6  (a) RhB degradation rate under sun light of obtained samples. (b) UV-vis spectra of RhB solutions after their respective irradiation time over N-400 (with inset photographs before and after the final degradation). (c) RhB photodegradation performance of synthesized samples after 100 min sun light and (d) their corresponding pseudo first order kinetics.
Fig.7  Scheme 1 Proposed sun-light-induced photocatalytic mechanism over N/TiO2 photocatalyst.
  Fig. S1 XRD patterns of as-obtained nanomaterials, spotting brookite peak at 30.6°.
  Fig. S2 FESEM image of undoped TiO2, N-0.
  Fig. S3 EDS results of as-obtained (a) N-0, (b) N-300, (c) N-400, (d) N-500, and (e) N-600.
  Fig. S4 (a) N2 sorption isotherms and (b) pore-size distribution plots of obtained N-0.
  Fig. S5 Ti 2p spectra of (a) N-0 and (b) N-400.
  Fig. S6 Photodegradation mechanism of RhB over a surface of photocatalyst.
  Fig. S7 UV-vis spectra of RhB solutions after their respective irradiation time over (a) N-0, (b) N-300, (c) N-500 and (d) N-600.
  Fig. S8 Recycling performance test of N-400 under 5 h sun-light irradiation.
Sample k/(10−2 min−1) R2
N-0 0.995 0.936
N-300 1.234 0.960
N-400 1.583 0.916
N-500 0.839 0.954
N-600 0.394 0.932
  Table S1 The reaction rate constant (k) of RhB degradation in the presence of various pure and N/TiO2 photocatalysts under sun light
1 R V Nair, M Jijith, V S Gummaluri, et al.. A novel and efficient surfactant-free synthesis of rutile TiO2 microflowers with enhanced photocatalytic activity. Optical Materials, 2016, 55: 38–43
https://doi.org/10.1016/j.optmat.2016.03.015
2 A K Sarkar, A Saha, A Tarafder, et al.. Efficient removal of toxic dyes via simultaneous adsorption and solar light driven photodegradation using recyclable functionalized amylopectin‒TiO2‒Au nanocomposite. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1679–1688
https://doi.org/10.1021/acssuschemeng.5b01614
3 L Liu, X Chen. Titanium dioxide nanomaterials: self-structural modifications. Chemical Reviews, 2014, 114(19): 9890–9918
https://doi.org/10.1021/cr400624r pmid: 24956359
4 M Myilsamy, M Mahalakshmi, N Subha, et al.. Visible light responsive mesoporous graphene-Eu2O3/TiO2 nanocomposites for the efficient photocatalytic degradation of 4-chlorophenol. RSC Advances, 2016, 6(41): 35024–35035
https://doi.org/10.1039/C5RA27541E
5 L Sun, J Li, C L Wang, et al.. An electrochemical strategy of doping Fe3+ into TiO2 nanotube array films for enhancement in photocatalytic activity. Solar Energy Materials & Solar Cells, 2009, 93(10): 1875–1880
https://doi.org/10.1016/j.solmat.2009.07.001
6 T Boningaria, S N R Inturia, M Suidan, et al.. Novel one-step synthesis of nitrogen-doped TiO2 by flame aerosol technique for visible-light photocatalysis: Effect of synthesis parameters and secondary nitrogen (N) source. Chemical Engineering Journal, 2018, 350: 324–334
https://doi.org/10.1016/j.cej.2018.05.122
7 L G Devi, N Kottam, S G Kumar. Preparation and characterization of Mn doped titanates with bicrystalline framework: Correlation of crystallite size with synergistic effect on photo catalytic activity. The Journal of Physical Chemistry C, 2009, 113(35): 15593–15601
https://doi.org/10.1021/jp903711a
8 H Li, Z Bian, J Zhu, et al.. Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. Journal of the American Chemical Society, 2007, 129(15): 4538–4539
https://doi.org/10.1021/ja069113u pmid: 17381091
9 A A Ismail, A Hakki, D W Bahnemann. Mesostructure Au/TiO2 nanocomposites for highly efficient catalytic reduction of p-nitrophenol. Journal of Molecular Catalysis A: Chemical, 2012, 358: 145–151
https://doi.org/10.1016/j.molcata.2012.03.009
10 N Li, X Zhang, W Zhou, et al.. High quality sulfur-doped titanium dioxide nanocatalysts with visible light photocatalytic activity from non-hydrolytic thermolysis synthesis. Inorganic Chemistry Frontiers, 2014, 1(7): 521–525
https://doi.org/10.1039/C4QI00027G
11 X Hu, G Li, J C Yu. Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir, 2010, 26(5): 3031–3039
https://doi.org/10.1021/la902142b pmid: 19736984
12 O Rudic, J Ranogajec, T Vulic, et al.. Photo-induced properties of TiO2/ZnAl layered double hydroxide coating onto porous mineral substrates. Ceramics International, 2014, 40(7): 9445–9455
https://doi.org/10.1016/j.ceramint.2014.02.017
13 Z Zheng, W Xie, Z S Lim, et al.. CdS sensitized 3D hierarchical TiO2/ZnO heterostructure for efficient solar energy conversion. Scientific Reports, 2014, 4(4): 5721 doi:10.1038/srep05721
pmid: 25030846
14 R Daghrir, P Drogui, D Robert. Modified TiO2 for environmental photocatalytic applications: A review. Industrial & Engineering Chemistry Research, 2013, 52(10): 3581–3599
https://doi.org/10.1021/ie303468t
15 Y Ren, Y Dong, Y Feng, et al.. Compositing two-dimensional materials with TiO2 for photocatalysis. Catalysts, 2018, 8(12): 590 doi:10.3390/catal8120590
16 G Barolo, S Livraghi, M Chiesa, et al.. Mechanism of the photoactivity under visible light of Ndoped titanium dioxide. charge carriers migration in irradiated NTiO2 investigated by electron paramagnetic resonance. The Journal of Physical Chemistry C, 2012, 116(39): 20887–20894
https://doi.org/10.1021/jp306123d
17 S Rehman, R Ullah, A M Butt, et al.. Strategies of making TiO2 and ZnO visible light active. Journal of Hazardous Materials, 2009, 170(2‒3): 560–569
https://doi.org/10.1016/j.jhazmat.2009.05.064 pmid: 19540666
18 R Asahi, T Morikawa, H Irie, et al.. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chemical Reviews, 2014, 114(19): 9824–9852
https://doi.org/10.1021/cr5000738 pmid: 25216232
19 R Jaiswal, J Bharambe, N Patel, et al.. Copper and Nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity. Applied Catalysis B: Environmental, 2015, 168‒169: 333–341
https://doi.org/10.1016/j.apcatb.2014.12.053
20 G Yang, Z Jiang, H Shi, et al.. Preparation of highly visible-light active N-doped TiO2 photocatalyst. Journal of Materials Chemistry, 2010, 20(25): 5301–5309
https://doi.org/10.1039/c0jm00376j
21 Y Cong, J Zhang, F Chen, et al.. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. The Journal of Physical Chemistry C, 2007, 111(19): 6976–6982
https://doi.org/10.1021/jp0685030
22 S Cao, B Liu, L Fan, et al.. Highly antibacterial activity of N-doped TiO2 thin films coated on stainless steel brackets under visible light irradiation. Applied Surface Science, 2014, 309: 119–127
https://doi.org/10.1016/j.apsusc.2014.04.198
23 J Z Bloh, A Folli, D E Macphee. Adjusting nitrogen doping level in titanium dioxide by codoping with tungsten: properties and band structure of the resulting materials. The Journal of Physical Chemistry C, 2014, 118(36): 21281–21292
https://doi.org/10.1021/jp507264g
24 B Qiu, Y Zhou, Y Ma, et al.. Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis. Scientific Reports, 2015, 5: 8591
https://doi.org/10.1038/srep08591 pmid: 25716132
25 Z Xiong, H Wu, L Zhang, et al.. Synthesis of TiO2 with controllable ratio of anatase to rutile. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(24): 9291–9297
https://doi.org/10.1039/c4ta01144a
26 W K Wang, J J Chen, X Zhang, et al.. Self-induced synthesis of phase-junction TiO2 with a tailored rutile to anatase ratio below phase transition temperature. Scientific Reports, 2016, 6: 20491
https://doi.org/10.1038/srep20491 pmid: 26864501
27 J Zhang, L J Xu, Z Q Zhu, et al.. Synthesis and properties of (Yb, N)-TiO2 photocatalyst for degradation of methylene blue (MB) under visible light irradiation. Materials Research Bulletin, 2015, 70: 358–364
https://doi.org/10.1016/j.materresbull.2015.04.060
28 A Zachariah, K V Baiju, S Shukla, et al.. Synergistic effect in photocatalysis as observed for mixed-phase nanocrystalline titania processed via sol‒gel solvent mixing and calcination. The Journal of Physical Chemistry C, 2008, 112(30): 11345–11356 doi:10.1021/jp712174y
29 A Gautam, A Kshirsagar, R Biswas, et al.. Photodegradation of organic dyes based on anatase and rutile TiO2 nanoparticles. RSC Advances, 2016, 6: 2746‒2759 doi:10.1039/C5RA20861K
30 G Naresh, T K Mandal. Excellent sun-light-driven photocatalytic activity by Aurivillius layered perovskites, Bi5−xLaxTi3FeO15 (x = 1, 2). ACS Applied Materials & Interfaces, 2014, 6(23): 21000–21010
https://doi.org/10.1021/am505767c pmid: 25380216
31 E P O’Brien, R I Dima, B Brooks, et al.. Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: lessons for protein denaturation mechanism. Journal of the American Chemical Society, 2007, 129(23): 7346–7353
https://doi.org/10.1021/ja069232+ pmid: 17503819
32 Y Nosaka, M Matsushita, J Nishino, et al.. Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds. Science and Technology of Advanced Materials, 2005, 6(2): 143–148
https://doi.org/10.1016/j.stam.2004.11.006
33 B Yu, W M Lau, J Yang. Preparation and characterization of N-TiO2 photocatalyst with high crystallinity and enhanced photocatalytic inactivation of bacteria. Nanotechnology, 2013, 24(33): 335705
https://doi.org/10.1088/0957-4484/24/33/335705 pmid: 23892455
34 E M Samsudina, S B A Hamida, J C Juana, et al.. Surface modification of mixed-phase hydrogenated TiO2 and corresponding photocatalytic response. Applied Surface Science, 2015, 359: 883–896
https://doi.org/10.1016/j.apsusc.2015.10.194
35 W Liu, Y Zhang. Electrical characterization of TiO2/CH3NH3PbI3 heterojunction solar cells. Journal of Materials Chemistry A, 2014, 2(26): 10244–10249
https://doi.org/10.1039/C4TA01219D
36 X F Lei, X X Xue, H Yang, et al.. Effect of calcination temperature on the structure and visible-light photocatalytic activities of (N, S and C) co-doped TiO2 nano-materials. Applied Surface Science, 2015, 332: 172–180
https://doi.org/10.1016/j.apsusc.2015.01.110
37 M Xing, F Shen, B Qiu, et al.. Highly-dispersed boron-doped graphene nanosheets loaded with TiO2 nanoparticles for enhancing CO2 photoreduction. Scientific Reports, 2014, 4(4): 6341 doi:10.1038/srep06341
pmid: 25209174
38 J Wang, C Fan, Z Ren, et al.. N-doped TiO2/C nanocomposites and N-doped TiO2 synthesised at different thermal treatment temperatures with the same hydrothermal precursor. Dalton Transactions, 2014, 43(36): 13783‒13791 doi:10.1039/C4DT00924J
39 K S Park, K M Min, Y H Jin, et al.. Enhancement of cyclability of urchin-like rutile TiO2 submicron spheres by nanopainting with carbon. Journal of Materials Chemistry, 2012, 22(31): 15981
https://doi.org/10.1039/c2jm32378h
40 W J Ong, L L Tan, S P Chai, et al.. Self-assembly of nitrogen-doped TiO2 with exposed {001} facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane. Nano Research, 2014, 7(10): 1528–1547 doi:10.1007/s12274-014-0514-z
41 M Wang, J Han, Y Hu, et al.. Mesoporous C, N-codoped TiO2 hybrid shells with enhanced visible light photocatalytic performance. RSC Advances, 2017, 7: 15513‒15520 doi:10.1039/C7RA00985B
42 S Liu, Z Cai, J Zhou, et al.. Nitrogen-doped TiO2 nanospheres for advanced sodium-ion battery and sodium-ion capacitor applications. Journal of Materials Chemistry A, 2016, 4(47): 18278–18283
https://doi.org/10.1039/C6TA08472A
43 X H Li, S X Liu. Characterization of visible light response N-F codoped TiO2 photocatalyst prepared by acid catalyzed hydrolysis. Acta Physico-Chimica Sinica, 2008, 24(11): 2019–2024 (in Chinese)
https://doi.org/10.1016/S1872-1508(08)60079-0
44 R B Singh, H Matsuzaki, Y Suzuki, et al.. Trapped state sensitive kinetics in LaTiO2N solid photocatalyst with and without cocatalyst loading. Journal of the American Chemical Society, 2014, 136(49): 17324–17331
https://doi.org/10.1021/ja5102823 pmid: 25397883
45 P Romero-Gómez, V Rico, A Borrás, et al.. Chemical state of nitrogen and visible surface and Schottky barrier driven photoactivities of N-doped TiO2 thin films. The Journal of Physical Chemistry C, 2009, 113(30): 13341–13351
https://doi.org/10.1021/jp9024816
46 R G Palgrave, D J Payne, R G Egdell. Nitrogen diffusion in doped TiO2 (110) single crystals: a combined XPS and SIMS study. Journal of Materials Chemistry, 2009, 19(44): 8418–8425
https://doi.org/10.1039/b913267h
47 X Tang, Z Wang, W Huang, et al.. Construction of N-doped TiO2/MoS2 heterojunction with synergistic effect for enhanced visible photodegradation activity. Materials Research Bulletin, 2018, 105: 126–132
https://doi.org/10.1016/j.materresbull.2018.04.046
48 M Sathish, B Viswanathan, R P Viswanath, et al.. Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chemistry of Materials, 2005, 17(25): 6349–6353
https://doi.org/10.1021/cm052047v
49 Y Liu, H Guo, Y Zhang, et al.. Heterogeneous activation of persulfate for Rhodamine B degradation with 3D flower sphere-like BiOI/Fe3O4 microspheres under visible light irradiation.Separation and Purification Technology, 2018, 192: 88‒98
https://doi.org/10.1016/j.seppur.2017.09.045
50 K A M Ahmed, B Li, B Tan, et al.. Urchin-like cobalt incorporated manganese oxide OMS-2 hollow spheres: Synthesis, characterization and catalytic degradation of RhB dye. Solid State Sciences, 2013, 15: 66–72
https://doi.org/10.1016/j.solidstatesciences.2012.08.029
51 Z He, C Sun, S Yang, et al.. Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation: mechanism and pathway. Journal of Hazardous Materials, 2009, 162(2‒3): 1477–1486
https://doi.org/10.1016/j.jhazmat.2008.06.047 pmid: 18674856
52 T Wang, X Yan, S Zhao, et al.. A facile one-step synthesis of three-dimensionally ordered macroporous N-doped TiO2 with ethanediamine as the nitrogen source. Journal of Materials Chemistry A, 2014, 2(37): 15611–15619
https://doi.org/10.1039/C4TA01922A
53 D Kusano, M Emori, H Sakama. Influence of electronic structure on visible light photocatalytic activity of nitrogen-doped TiO2. RSC Advances, 2017, 7(4): 1887‒1898 doi:10.1039/c6ra25238a
54 D O Scanlon, C W Dunnill, J Buckeridge, et al.. Band alignment of rutile and anatase TiO2. Nature Materials, 2013, 12(9): 798–801
https://doi.org/10.1038/nmat3697 pmid: 23832124
55 M A Mohamed, M F M Zain, L J Minggu, et al.. Revealing the role of kapok fibre as bio-template for in-situ construction of C-doped g-C3N4@C, N co-doped TiO2 core-shell heterojunction photocatalyst and its photocatalytic hydrogen production performance. Applied Surface Science, 2019, 476: 205–220
https://doi.org/10.1016/j.apsusc.2019.01.080
56 M Sharma, P K Mohapatra, D Bahadur. Improved photocatalytic degradation of organic dye using Ag3PO4/MoS2 nanocomposite. Frontiers of Materials Science, 2017, 11(4): 366–374
https://doi.org/10.1007/s11706-017-0404-x
57 Y Dong, Y Zhao, Y Chen, et al.. Graphdiyne-hybridized N-doped TiO2 nanosheets for enhanced visible light photocatalytic activity. Journal of Materials Science, 2018, 53(12): 8921–8932
https://doi.org/10.1007/s10853-018-2210-y
[1] Qizhi TIAN, Yajun JI, Yiyi QIAN, Abulikemu ABULIZI. Synthesis of defect-rich hierarchical sponge-like TiO2 nanoparticles and their improved photocatalytic and photoelectrochemical performance[J]. Front. Mater. Sci., 2020, 14(3): 286-295.
[2] Yuming CHEN, Wenhao TANG, Jingru MA, Ben GE, Xiangliang WANG, Yufen WANG, Pengfei REN, Ruiping LIU. Nickel-decorated TiO2 nanotube arrays as a self-supporting cathode for lithium--sulfur batteries[J]. Front. Mater. Sci., 2020, 14(3): 266-274.
[3] Zhiyu ZHANG, Lixia HU, Hui ZHANG, Liping YU, Yunxiao LIANG. Large-sized nano-TiO2/SiO2 mesoporous nanofilm-constructed macroporous photocatalysts with excellent photocatalytic performance[J]. Front. Mater. Sci., 2020, 14(2): 163-176.
[4] Pengfei ZHU, Zhihao REN, Ruoxu WANG, Ming DUAN, Lisi XIE, Jing XU, Yujing TIAN. Preparation and visible photocatalytic dye degradation of Mn-TiO2/sepiolite photocatalysts[J]. Front. Mater. Sci., 2020, 14(1): 33-42.
[5] Zhihong JING, Xiue LIU, Yan DU, Yuanchun HE, Tingjiang YAN, Wenliang WANG, Wenjuan LI. Synthesis, characterization, antibacterial and photocatalytic performance of Ag/AgI/TiO2 hollow sphere composites[J]. Front. Mater. Sci., 2020, 14(1): 1-13.
[6] Liuxin YANG, Zhou CHEN, Jian ZHANG, Chang-An WANG. SrTiO3/TiO2 heterostructure nanowires with enhanced electron--hole separation for efficient photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 342-351.
[7] Meng LIU, Lei LIU, Yifeng YU, Haijun LV, Aibing CHEN, Senlin HOU. Synthesis of nitrogen-doped carbon spheres using the modified Stöber method for supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 156-164.
[8] Pengcheng WU, Chang LIU, Yan LUO, Keliang WU, Jianning WU, Xuhong GUO, Juan HOU, Zhiyong LIU. A novel black TiO2/ZnO nanocone arrays heterojunction on carbon cloth for highly efficient photoelectrochemical performance[J]. Front. Mater. Sci., 2019, 13(1): 43-53.
[9] Zhongchi WANG, Gongsheng SONG, Jianle XU, Qiang FU, Chunxu PAN. Electrospun titania fibers by incorporating graphene/Ag hybrids for the improved visible-light photocatalysis[J]. Front. Mater. Sci., 2018, 12(4): 379-391.
[10] Ruirui LIU, Zhijiang JI, Jing WANG, Jinjun ZHANG. Mesocrystalline TiO2/sepiolite composites for the effective degradation of methyl orange and methylene blue[J]. Front. Mater. Sci., 2018, 12(3): 292-303.
[11] Stavros KATSIAOUNIS, Christina TIFLIDIS, Christina TSEKOURA, Emmanuel TOPOGLIDIS. Electrochemical and spectroelectrochemical characterization of different mesoporous TiO2 film electrodes for the immobilization of Cytochrome c[J]. Front. Mater. Sci., 2018, 12(1): 64-73.
[12] Jun WU, Chentian SHI, Yupeng ZHANG, Qiang FU, Chunxu PAN. Photocatalytic mechanism of high-activity anatase TiO2 with exposed (001) facets from molecular-atomic scale: HRTEM and Raman studies[J]. Front. Mater. Sci., 2017, 11(4): 358-365.
[13] Shenglian YAO, Xujia FENG, Wenhao LI, Lu-Ning WANG, Xiumei WANG. Regulation of RAW 264.7 macrophages behavior on anodic TiO2 nanotubular arrays[J]. Front. Mater. Sci., 2017, 11(4): 318-327.
[14] Cong ZHAO, Da-chuan ZHU, Xiao-yao CHENG, Shi-xiu CAO. Highly ordered Ag--TiO2 nanocomposited arrays with high visible-light photocatalytic activity[J]. Front. Mater. Sci., 2017, 11(3): 241-249.
[15] Alberto ESTRELLA GONZÁLEZ, Maximiliano ASOMOZA, Ulises ARELLANO, Sandra CIPAGAUTA DíAZ, Silvia SOLÍS. Preparation and characterization of phosphate-modified mesoporous TiO2 incorporated in a silica matrix and their photocatalytic properties in the photodegradation of Congo red[J]. Front. Mater. Sci., 2017, 11(3): 250-261.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed