Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2018, Vol. 12 Issue (4) : 379-391    https://doi.org/10.1007/s11706-018-0441-0
RESEARCH ARTICLE
Electrospun titania fibers by incorporating graphene/Ag hybrids for the improved visible-light photocatalysis
Zhongchi WANG1,2, Gongsheng SONG1,2, Jianle XU1, Qiang FU1,3, Chunxu PAN1,2,3()
1. School of Physics and Technology, and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan 430072, China
2. Shenzhen Research Institute, Wuhan University, Shenzhen 518057, China
3. Center for Electron Microscopy, Wuhan University, Wuhan 430072, China
 Download: PDF(568 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel graphene/Ag nanoparticles (NPs) hybrid (prepared by a physical method (PM)) was incorporated into electrospun TiO2 fibers to improve visible-light-driven photocatalytic properties. The experimental study revealed that the graphene/Ag NPs (PM) hybrid not only decreased the bandgap energy of TiO2, but also enhanced its light response in the visible region due to the surface plasmon resonance (SPR) effect. In addition, compared with those of TiO2 fibers incorporating the graphene/Ag NPs hybrid (prepared by a chemical method (CM)), TiO2–graphene/Ag NPs (PM) fibers exhibited a higher surface photocurrent density and superior photocatalytic performance, i.e., the visible-light-driven photocatalytic activity was enhanced by 2 times. The main reasons include a lower surface defect density of the graphene/Ag NPs (PM) hybrid, a smaller particle size (10 nm) and a higher dispersity of Ag NPs, which promote the rapid transfer of photoexcited charge carriers and inhibit the recombination of photogenerated electrons and holes. It is expected that this kind of ternary electrospun fibers will be a promising candidate for applications in water splitting, solar cells, CO2 conversion and optoelectronic devices, etc.

Keywords TiO2--graphene/Ag      electrospining      photocatalysis     
Corresponding Author(s): Chunxu PAN   
Online First Date: 23 October 2018    Issue Date: 10 December 2018
 Cite this article:   
Zhongchi WANG,Gongsheng SONG,Jianle XU, et al. Electrospun titania fibers by incorporating graphene/Ag hybrids for the improved visible-light photocatalysis[J]. Front. Mater. Sci., 2018, 12(4): 379-391.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-018-0441-0
https://academic.hep.com.cn/foms/EN/Y2018/V12/I4/379
Fig.1  Schematic diagram of the preparation of TiO2?graphene/Ag NPs fibers.
Fig.2  TEM images of (a) pristine graphene sheets, (b) the graphene/Ag NPs (CM) hybrid and (c) the graphene/Ag NPs (PM) hybrid. (d) Raman spectra of samples. Size distribution maps of Ag NPs: (e) the graphene/Ag NPs (CM) hybrid; (f) the graphene/Ag NPs (PM) hybrid.
Fig.3  Microstructure and composition distribution of TiO2?graphene/Ag NPs (PM) fibers: SEM images of (a) unsintered fibers and (b) sintered fibers; (c) TEM image and (d) SEM mapping of a sintered fiber.
Fig.4  (a) XRD patterns and (b) Raman spectra of fibers.
Fig.5  XPS spectra of TiO2?graphene/Ag NPs (PM) fibers: (a) survey; (b) C 1s; (c) O 1s; (d) Ti 2p; (e) Ag 3d.
Fig.6  (a) UV-vis diffuse reflectance spectra and (b) PL spectra of samples.
Fig.7  Photoelectrochemical and photocatalytic performances of samples: (a) transient photocurrent densities; (b) photocatalytic activities; (c) photodegradation efficiencies; (d) kinetic linear simulation curves of photocatalytic reactions; (e) pseudo-first-order rates of photocatalytic reactions; (f) photocatalytic activities of TiO2?graphene/Ag NPs (PM) fibers with 5 cycles.
Fig.8  Schematic diagram of the interfacial photogenerated charge carriers separation and transfer within TiO2?graphene/Ag (PM) fibers.
1 Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38
https://doi.org/10.1038/238037a0 pmid: 12635268
2 Asahi R, Morikawa T, Ohwaki T, et al.. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269–271
https://doi.org/10.1126/science.1061051 pmid: 11452117
3 Cozzoli P D, Comparelli R, Fanizza E, et al.. Photocatalytic activity of organic-capped anatase TiO2 nanocrystals in homogeneous organic solutions. Materials Science and Engineering C, 2003, 23(6‒8): 707–713
https://doi.org/10.1016/j.msec.2003.09.101
4 Chen X, Shen S, Guo L, et al.. Semiconductor-based photocatalytic hydrogen generation. Chemical Reviews, 2010, 110(11): 6503–6570
https://doi.org/10.1021/cr1001645 pmid: 21062099
5 Ni M, Leung M K H, Leung D Y C, et al.. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable & Sustainable Energy Reviews, 2007, 11(3): 401–425
https://doi.org/10.1016/j.rser.2005.01.009
6 O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740
https://doi.org/10.1038/353737a0
7 Grätzel M. Photoelectrochemical cells. Nature, 2001, 414(6861): 338–344
https://doi.org/10.1038/35104607 pmid: 11713540
8 Khan S U, Al-Shahry M, Ingler W BJr. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 2002, 297(5590): 2243–2245
https://doi.org/10.1126/science.1075035 pmid: 12351783
9 Lin Z H, Xie Y, Yang Y, et al.. Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials. ACS Nano, 2013, 7(5): 4554–4560
https://doi.org/10.1021/nn401256w pmid: 23597018
10 Chen X, Mao S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews, 2007, 107(7): 2891–2959
https://doi.org/10.1021/cr0500535 pmid: 17590053
11 Ren L, Liu Y D, Qi X, et al.. An architectured TiO2 nanosheet with discrete integrated nanocrystalline subunits and its application in lithium batteries. Journal of Materials Chemistry, 2012, 22(40): 21513–21518
https://doi.org/10.1039/c2jm33085g
12 Ren L, Qi X, Liu Y D, et al.. Upconversion-P25-graphene composite as an advanced sunlight driven photocatalytic hybrid material. Journal of Materials Chemistry, 2012, 22(23): 11765–11771
https://doi.org/10.1039/c2jm30457k
13 Tian J, Zhao Z, Kumar A, et al.. Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chemical Society Reviews, 2014, 43(20): 6920–6937
https://doi.org/10.1039/C4CS00180J pmid: 25014328
14 Ge M, Li Q, Cao C, et al.. One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Advanced Science, 2017, 4(1): 1600152
https://doi.org/10.1002/advs.201600152 pmid: 28105391
15 Kumar P S, Sundaramurthy J, Sundarrajan S, et al.. Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation. Energy & Environmental Science, 2014, 7(10): 3192–3222
https://doi.org/10.1039/C4EE00612G
16 Zhang J, Cai Y B, Hou X B, et al.. Preparation of TiO2 nanofibrous membranes with hierarchical porosity for efficient photocatalytic degradation. The Journal of Physical Chemistry C, 2018, 122(16): 8946–8953
https://doi.org/10.1021/acs.jpcc.8b00555
17 Ren L, Li Y Z, Hou J G, et al.. The pivotal effect of the interaction between reactant and anatase TiO2 nanosheets with exposed {001} facets on photocatalysis for the photocatalytic purification of VOCs. Applied Catalysis B: Environmental, 2016, 181: 625–634
https://doi.org/10.1016/j.apcatb.2015.08.034
18 Wang M, Ioccozia J, Sun L, et al.. Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis. Energy & Environmental Science, 2014, 7(7): 2182–2202
https://doi.org/10.1039/C4EE00147H
19 He Z, Que W, Chen J, et al.. Photocatalytic degradation of methyl orange over nitrogen-fluorine codoped TiO2 nanobelts prepared by solvothermal synthesis. ACS Applied Materials & Interfaces, 2012, 4(12): 6816–6826
https://doi.org/10.1021/am3019965 pmid: 23148575
20 Lan L, Li Y Z, Zeng M, et al.. Efficient UV–vis-infrared light-driven catalytic abatement of benzene on amorphous manganese oxide supported on anatase TiO2 nanosheet with dominant {001} facets promoted by a photothermocatalytic synergetic effect. Applied Catalysis B: Environmental, 2017, 203: 494–504
https://doi.org/10.1016/j.apcatb.2016.10.047
21 Zeng M, Li Y Z, Mao M M, et al.. Synergetic effect between photocatalysis on TiO2 and thermocatalysis on CeO2 for gas-phase oxidation of benzene on TiO2/CeO2 nanocomposites. ACS Catalysis, 2015, 5(6): 3278–3286
https://doi.org/10.1021/acscatal.5b00292
22 Liu H H, Li Y Z, Yang Y, et al.. Highly efficient UV-vis-infrared catalytic purification of benzene on CeMnxOy/TiO2 nanocomposite, caused by its high thermocatalytic activity and strong absorption in the full solar spectrum region. Journal of Materials Chemistry A, 2016, 4(25): 9890–9899
https://doi.org/10.1039/C6TA03181A
23 Ma Y, Li Y Z, Mao M Y, et al.. Synergetic effect between photocatalysis on TiO2 and solar light-driven thermocatalysis on MnOx for benzene purification on MnOx/TiO2 nanocomposites. Journal of Materials Chemistry A, 2015, 3(10): 5509–5516
https://doi.org/10.1039/C5TA00126A
24 Ren X H, Qi X, Shen Y Z, et al.. 2D co-catalytic MoS2 nanosheets embedded with 1D TiO2 nanoparticles for enhancing photocatalytic activity. Journal of Physics D: Applied Physics, 2016, 49(31): 315304–315312
https://doi.org/10.1088/0022-3727/49/31/315304
25 Mohamed A E R, Rohani S. Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode: a review. Energy & Environmental Science, 2011, 4(4): 1065–1086
https://doi.org/10.1039/c0ee00488j
26 Zhang J, Xiao F X, Xiao G, et al.. Linker-assisted assembly of 1D TiO2 nanobelts/3D CdS nanospheres hybrid heterostructure as efficient visible light photocatalyst. Applied Catalysis A, 2016, 521: 50–56
https://doi.org/10.1016/j.apcata.2015.10.046
27 Wang C, Astruc D. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. Chemical Society Reviews, 2014, 43(20): 7188–7216
https://doi.org/10.1039/C4CS00145A pmid: 25017125
28 Zhang X Y, Li H P, Cui X L, et al.. Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. Journal of Materials Chemistry C, 2010, 20(14): 2801–2806
29 Kong M, Li Y, Chen X, et al.. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. Journal of the American Chemical Society, 2011, 133(41): 16414–16417
https://doi.org/10.1021/ja207826q pmid: 21923140
30 Wen Y, Ding H, Shan Y. Preparation and visible light photocatalytic activity of Ag/TiO2/graphene nanocomposite. Nanoscale, 2011, 3(10): 4411–4417
https://doi.org/10.1039/c1nr10604j pmid: 21909581
31 Zhang Y, Pan C. TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. Journal of Materials Science, 2011, 46(8): 2622–2626
https://doi.org/10.1007/s10853-010-5116-x
32 Li X, Zhu J, Wei B. Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chemical Society Reviews, 2016, 45(11): 3145–3187
https://doi.org/10.1039/C6CS00195E pmid: 27048993
33 Tang X Z, Cao Z, Zhang H B, et al.. Growth of silver nanocrystals on graphene by simultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-step approach. Chemical Communications, 2011, 47(11): 3084–3086
https://doi.org/10.1039/c0cc05613h pmid: 21298137
34 Zhou Y, Yang J, He T, et al.. Highly stable and dispersive silver nanoparticle‒graphene composites by a simple and low-energy-consuming approach and their antimicrobial activity. Small, 2013, 9(20): 3445–3454
https://doi.org/10.1002/smll.201202455 pmid: 23637081
35 Liu C, Wang K, Luo S, et al.. Direct electrodeposition of graphene enabling the one-step synthesis of graphene‒metal nanocomposite films. Small, 2011, 7(9): 1203–1206
https://doi.org/10.1002/smll.201002340 pmid: 21480521
36 Pavithra C L P, Sarada B V, Rajulapati K V, et al.. A new electrochemical approach for the synthesis of copper‒graphene nanocomposite foils with high hardness. Scientific Reports, 2014, 4(6): 4049–4055
pmid: 24514043
37 Yang J, Zang C, Sun L, et al.. Synthesis of graphene/Ag nanocomposite with good dispersibility and electroconductibility via solvothermal method. Materials Chemistry and Physics, 2011, 129(1‒2): 270–274
https://doi.org/10.1016/j.matchemphys.2011.04.002
38 Guardia L, Villar-Rodil S, Paredes J I, et al.. UV light exposure of aqueous graphene oxide suspensions to promote their direct reduction, formation of graphene–metal nanoparticle hybrids and dye degradation. Carbon, 2012, 50(3): 1014–1024
https://doi.org/10.1016/j.carbon.2011.10.005
39 Sygletou M, Tzourmpakis P, Petridis C, et al.. Laser induced nucleation of plasmonic nanoparticles on two-dimensional nanosheets for organic photovoltaics. Journal of Materials Chemistry A, 2016, 4(3): 1020–1027
https://doi.org/10.1039/C5TA09199C
40 Liu S, Tian J, Wang L, et al.. Microwave-assisted rapid synthesis of Ag nanoparticles/graphene nanosheet composites and their application for hydrogen peroxide detection. Journal of Nanoparticle Research, 2011, 13(10): 4539–4548
https://doi.org/10.1007/s11051-011-0410-3
41 Zhang Q, Ye S, Chen X, et al.. Photocatalytic degradation of ethylene using titanium dioxide nanotube arrays with Ag and reduced graphene oxide irradiated by γ-ray radiolysis. Applied Catalysis B: Environmental, 2017, 203: 673–683
https://doi.org/10.1016/j.apcatb.2016.10.034
42 Liu C H, Mao B H, Gao J, et al.. Size-controllable self-assembly of metal nanoparticles on carbon nanostructures in room-temperature ionic liquids by simple sputtering deposition. Carbon, 2012, 50(8): 3008–3014
https://doi.org/10.1016/j.carbon.2012.02.086
43 Hummers W S, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80(6): 1339
https://doi.org/10.1021/ja01539a017
44 Wang C Y, Liu C Y, Liu Y, et al.. Surface-enhanced Raman scattering effect for Ag/TiO2 composite particles. Applied Surface Science, 1999, 147(1‒4): 52–57
https://doi.org/10.1016/S0169-4332(99)00117-8
45 Gao L, Ren W, Li F, et al.. Total color difference for rapid and accurate identification of graphene. ACS Nano, 2008, 2(8): 1625–1633
https://doi.org/10.1021/nn800307s pmid: 19206365
46 Cançado L G, Jorio A, Ferreira E H, et al.. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Letters, 2011, 11(8): 3190–3196
https://doi.org/10.1021/nl201432g pmid: 21696186
47 Zhang L, Zhang Q, Xie H, et al.. Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis. Applied Catalysis B: Environmental, 2017, 201: 470–478
https://doi.org/10.1016/j.apcatb.2016.08.056
48 Zhang W F, He Y L, Zhang M S, et al.. Raman scattering study on anatase TiO2 nanocrystals. Journal of Physics D: Applied Physics, 2000, 33(8): 912–916
https://doi.org/10.1088/0022-3727/33/8/305
49 Zhang Y, Li D, Tan X, et al.. High quality graphene sheets from graphene oxide by hot-pressing. Carbon, 2013, 54(2): 143–148
https://doi.org/10.1016/j.carbon.2012.11.012
50 Lang Q, Chen Y, Huang T, et al.. Graphene “bridge” in transferring hot electrons from plasmonic Ag nanocubes to TiO2 nanosheets for enhanced visible light photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 220: 182–190
https://doi.org/10.1016/j.apcatb.2017.08.045
51 Zhang J, Xiao F X, Xiao G, et al.. Self-assembly of a Ag nanoparticle-modified and graphene-wrapped TiO2 nanobelt ternary heterostructure: surface charge tuning toward efficient photocatalysis. Nanoscale, 2014, 6(19): 11293–11302
https://doi.org/10.1039/C4NR03115F pmid: 25134018
52 Wu J, Luo C, Li D, et al.. Preparation of Au nanoparticle-decorated ZnO/NiO heterostructure via nonsolvent method for high-performance photocatalysis. Journal of Materials Science, 2017, 52(3): 1285–1295
https://doi.org/10.1007/s10853-016-0424-4
53 Sher Shah M S, Zhang K, Park A R, et al.. Single-step solvothermal synthesis of mesoporous Ag‒TiO2‒reduced graphene oxide ternary composites with enhanced photocatalytic activity. Nanoscale, 2013, 5(11): 5093–5101
https://doi.org/10.1039/c3nr00579h pmid: 23640656
54 Shi J, Chen J, Feng Z, et al.. Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture. The Journal of Physical Chemistry C, 2007, 111(2): 693–699
https://doi.org/10.1021/jp065744z
55 Luo C, Li D, Wu W, et al.. Preparation of 3D reticulated ZnO/CNF/NiO heteroarchitecture for high-performance photocatalysis. Applied Catalysis B: Environmental, 2015, 166‒167: 217–223
https://doi.org/10.1016/j.apcatb.2014.11.030
56 Huang H J, Zhen S Y, Li P Y, et al.. Confined migration of induced hot electrons in Ag/graphene/TiO2 composite nanorods for plasmonic photocatalytic reaction. Optics Express, 2016, 24(14): 15603–15608
https://doi.org/10.1364/OE.24.015603 pmid: 27410833
[1] Xuhua YE, Xiangyu YAN, Xini CHU, Shixiang ZUO, Wenjie LIU, Xiazhang LI, Chao YAO. Construction of upconversion fluoride/attapulgite nanocomposite for visible-light-driven photocatalytic nitrogen fixation[J]. Front. Mater. Sci., 2020, 14(4): 469-480.
[2] Xiangyu YAN, Da DAI, Kun MA, Shixiang ZUO, Wenjie LIU, Xiazhang LI, Chao YAO. Microwave hydrothermal synthesis of lanthanum oxyfluoride nanorods for photocatalytic nitrogen fixation: Effect of Pr doping[J]. Front. Mater. Sci., 2020, 14(1): 43-51.
[3] Timur Sh. ATABAEV, Anara MOLKENOVA. Upconversion optical nanomaterials applied for photocatalysis and photovoltaics: Recent advances and perspectives[J]. Front. Mater. Sci., 2019, 13(4): 335-341.
[4] Chuan DENG, Xianxian WEI, Ruixiang LIU, Yajie DU, Lei PAN, Xiang ZHONG, Jianhua SONG. Synthesis of sillenite-type Bi36Fe2O57 and elemental bismuth with visible-light photocatalytic activity for water treatment[J]. Front. Mater. Sci., 2018, 12(4): 415-425.
[5] Palepu Teja RAVINDAR, Vidya Sagar CHOPPELLA, Anil Kumar MOKSHAGUNDAM, M. KIRUBA, Sunil G. BABU, Korupolu Raghu BABU, L. John BERCHMANS, Gosipathala SREEDHAR. Enhanced visible-light-driven photocatalysis of Bi2YO4Cl heterostructures functionallized by bimetallic RhNi nanoparticles[J]. Front. Mater. Sci., 2018, 12(4): 405-414.
[6] Ruirui LIU, Zhijiang JI, Jing WANG, Jinjun ZHANG. Mesocrystalline TiO2/sepiolite composites for the effective degradation of methyl orange and methylene blue[J]. Front. Mater. Sci., 2018, 12(3): 292-303.
[7] Madhulika SHARMA, Pranab Kishore MOHAPATRA, Dhirendra BAHADUR. Improved photocatalytic degradation of organic dye using Ag3PO4/MoS2 nanocomposite[J]. Front. Mater. Sci., 2017, 11(4): 366-374.
[8] Alberto ESTRELLA GONZÁLEZ, Maximiliano ASOMOZA, Ulises ARELLANO, Sandra CIPAGAUTA DíAZ, Silvia SOLÍS. Preparation and characterization of phosphate-modified mesoporous TiO2 incorporated in a silica matrix and their photocatalytic properties in the photodegradation of Congo red[J]. Front. Mater. Sci., 2017, 11(3): 250-261.
[9] Hao WANG, Yuhan WU, Pengcheng WU, Shanshan CHEN, Xuhong GUO, Guihua MENG, Banghua PENG, Jianning WU, Zhiyong LIU. Environmentally benign chitosan as reductant and supporter for synthesis of Ag/AgCl/chitosan composites by one-step and their photocatalytic degradation performance under visible-light irradiation[J]. Front. Mater. Sci., 2017, 11(2): 130-138.
[10] Wei ZHAO,Zihao WANG,Lei ZHOU,Nianqi LIU,Hongxing WANG. Natural sunlight irradiated flower-like CuS synthesized from DMF solvothermal treatment[J]. Front. Mater. Sci., 2016, 10(3): 290-299.
[11] Wen-can ZHOU, Zheng-cao LI, Zheng-jun ZHANG, Ken ONDA, Sho OGIHARA, Yoichi OKIMOTO, Shin-ya KOSHIHARA, . Nanostructured TiO 2 photocatalyst and pump-probe spectroscopic study[J]. Front. Mater. Sci., 2009, 3(4): 403-408.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed