Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2017, Vol. 11 Issue (3) : 250-261    https://doi.org/10.1007/s11706-017-0389-5
RESEARCH ARTICLE
Preparation and characterization of phosphate-modified mesoporous TiO2 incorporated in a silica matrix and their photocatalytic properties in the photodegradation of Congo red
Alberto ESTRELLA GONZÁLEZ(), Maximiliano ASOMOZA, Ulises ARELLANO, Sandra CIPAGAUTA DíAZ, Silvia SOLÍS
Department of Chemistry, Metropolitan Autonomous University-Iztapalapa, P.O. Box 55-532, C.P. 09340, México City, México
 Download: PDF(491 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study describes the development of mesostructured TiO2 photocatalysts modified with PO43− to improve its specific surface area and reduce the recombination rate of the electron?hole pairs. The mesoporous photocatalyst was successfully incorporated into a high specific surface area silica matrix by the hydrolysis reaction of tetraethyl orthosilicate (TEOS). Pluronic 123 and phosphoric acid were used as the directing agent for the structure of the mesoporous TiO2 and as a source of phosphorus, respectively. TiO2, P/TiO2, TiO2?SiO2 and P/TiO2?SiO2 materials were characterized by BET, XRD, TEM-EDS, FTIR and UV-vis DRS measurements. The photoactivity of TiO2?SiO2 nanocomposites containing 15 wt.% photocatalyst/silica was evaluated in the degradation reaction of anionic dyes with UV radiation. The proposed nanomaterials showed high potential for applications in the remediation of wastewater, being able to reuse in several cycles of reaction, maintaining its photoactivity and stability. The separation and recovery time of the material is reduced between cycles since no centrifugation or filtration processes are required after the photooxidation reaction.

Keywords photocatalysis      phosphated TiO2      TiO2?SiO2      Congo red dye     
Corresponding Author(s): Alberto ESTRELLA GONZÁLEZ   
Online First Date: 25 July 2017    Issue Date: 24 August 2017
 Cite this article:   
Alberto ESTRELLA GONZÁLEZ,Maximiliano ASOMOZA,Ulises ARELLANO, et al. Preparation and characterization of phosphate-modified mesoporous TiO2 incorporated in a silica matrix and their photocatalytic properties in the photodegradation of Congo red[J]. Front. Mater. Sci., 2017, 11(3): 250-261.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-017-0389-5
https://academic.hep.com.cn/foms/EN/Y2017/V11/I3/250
Fig.1  (a) XRD patterns of TiO2, P/TiO2, P/TiO2–SiO2 and TiO2–SiO2 samples. (b) Low-angle XRD patterns of TiO2 and P/TiO2 samples.
Fig.2  EDX spectra of (a) P/TiO2 and (b) P/TiO2–SiO2 samples.
Fig.3  N2 adsorption–desorption isotherms of TiO2, P/TiO2, TiO2–SiO2 and P/TiO2–SiO2 materials.
CatalystSpecific surface area /(m2?g−1)Pore volume /(cm3?g−1)Pore diameter /nm
TiO21120.447.7
P/TiO21410.147.1
TiO2–SiO25290.344.1
P/TiO2–SiO24970.293.4
Tab.1  The textural parameters of samples
Fig.4  (a) Diffuse reflectance spectra and (b) modified Kubelka–Munk spectra of the TiO2, P/TiO2, TiO2–SiO2 and P/TiO2–SiO2 materials.
Fig.5  FTIR results of TiO2, P/TiO2, TiO2–SiO2 and P/TiO2–SiO2 materials.
Fig.6  (a)(b)(c) TEM images and (d) HRTEM image of the sample TiO2/SiO2.
Fig.7  (a) TEM image and (b)(c)(d) elemental mapping of the TiO2–SiO2 material.
Fig.8  Percentages of degradation of aqueous CR dye with materials.
Fig.9  UV spectra of aqueous CR dye degradation with the P/TiO2–SiO2 photocatalyst.
Fig.10  The residual TOC in the photodegradation of aqueous CR dye with the P/TiO2–SiO2 material after 4 h.
Fig.11  Plots of the pseudo-firsts order kinetics of CR photodegradation.
Fig.12  Photocatalytic behavior of characteristic peaks of CR during the irradiation time with UV light.
Fig.13  Schematic illustration of the proposed mechanism for photodegradation of CR dyes by the electron–hole model.
Fig.14  Recycling and photocatalytic stability studies with the P/TiO2–SiO2 material for five cycles under the same experimental conditions.
1 Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38
https://doi.org/10.1038/238037a0 pmid: 12635268
2 Han F, Kambala V S R, Srinivasan M, et al.. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review. Applied Catalysis A: General, 2009, 359(1–2): 25–40
https://doi.org/10.1016/j.apcata.2009.02.043
3 Reddy K M, Manorama S V, Reddy A R. Bandgap studies on anatase titanium dioxide nanoparticles. Materials Chemistry and Physics, 2003, 78(1): 239–245
https://doi.org/10.1016/S0254-0584(02)00343-7
4 Mo S D, Ching W Y. Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Physical Review B: Condensed Matter and Materials Physics, 1995, 51(19): 13023–13032
https://doi.org/10.1103/PhysRevB.51.13023 pmid: 9978097
5 Pekakis P A, Xekoukoulotakis N P, Mantzavinos D. Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Research, 2006, 40(6): 1276–1286
https://doi.org/10.1016/j.watres.2006.01.019 pmid: 16510167
6 Almquist C B, Biswas P. Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity. Journal of Catalysis, 2002, 212(2): 145–156
https://doi.org/10.1006/jcat.2002.3783
7 Yoshitake H, Sugihara T, Tatsumi T. Preparation of Wormhole-like mesoporous TiO2 with an extremely large surface area and stabilization of its surface by chemical vapor deposition. Chemistry of Materials, 2002, 14(3): 1023–1029
https://doi.org/10.1021/cm010539b
8 Soler-Illia G J D A, Sanchez C. Interactions between poly(ethylene oxide)-based surfactants and transition metal alkoxides: their role in the templated construction of mesostructured hybrid organic–inorganic composites. New Journal of Chemistry, 2000, 24(7): 493–499
https://doi.org/10.1039/b002518f
9 Soler-Illia G J D A, Scolan E, Louis A, et al.. Design of meso-structured titanium oxo based hybrid organic–inorganic networks. New Journal of Chemistry, 2001, 25(1): 156–165
https://doi.org/10.1039/b006139p
10 Calleja G, Serrano D P, Sanz R, et al.. Study on the synthesis of high-surface-area mesoporous TiO2 in the presence of nonionic surfactants. Industrial & Engineering Chemistry Research, 2004, 43(10): 2485–2492
https://doi.org/10.1021/ie030646a
11 Calleja G, Serrano D P, Sanz R, et al.. Mesostructured SiO2-doped TiO2 with enhanced thermal stability prepared by a soft-templating sol–gel route. Microporous and Mesoporous Materials, 2008, 111(1–3): 429–440
https://doi.org/10.1016/j.micromeso.2007.08.021
12 Wang W, Lu C, Ni Y, et al.. Enhanced performance of {001} facets dominated mesoporous TiO2 photocatalyst composed of high-reactive nanocrystals and mesoporous spheres. Applied Surface Science, 2013, 265: 438–442
https://doi.org/10.1016/j.apsusc.2012.11.025
13 Zhao Z, Sun Z, Zhao H, et al.. Phase control of hierarchically structured mesoporous anatase TiO2 microspheres covered with {001} facets. Journal of Materials Chemistry, 2012, 22(41): 21965–21971
https://doi.org/10.1039/c2jm35045a
14 Ismail A A, Bahnemann D W, Robben L, et al.. Palladium doped porous titania photocatalysts: impact of mesoporous order and crystallinity. Chemistry of Materials, 2010, 22(1): 108–116
https://doi.org/10.1021/cm902500e
15 Wang Z C, Shui H F. Effect of PO43– and PO43––SO42– modification of TiO2 on its photocatalytic properties. Journal of Molecular Catalysis A: Chemical, 2007, 263(1–2): 20–25
https://doi.org/10.1016/j.molcata.2006.08.017
16 Shi Q, Yang D, Jiang Z, et al.. Visible-light photocatalytic regeneration of NADH using P-doped TiO2 nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 2006, 43(1–4): 44–48
https://doi.org/10.1016/j.molcatb.2006.06.005
17 Kőrösi L, Dékány I. Preparation and investigation of structural and photocatalytic properties of phosphate modified titanium dioxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 280(1–3): 146–154
https://doi.org/10.1016/j.colsurfa.2006.01.052
18 Lin L, Lin W, Xie J L, et al.. Photocatalytic properties of phosphor-doped titania nanoparticles. Applied Catalysis B: Environmental, 2007, 75(1–2): 52–58
https://doi.org/10.1016/j.apcatb.2007.03.016
19 Yu H F, Zhang Z W, Hu F C. Phase stabilities and photocatalytic activities of P/Zn–TiO2 nanoparticles able to operate under UV-vis light irradiation. Journal of Alloys and Compounds, 2008, 465(1–2): 484–490
https://doi.org/10.1016/j.jallcom.2007.10.127
20 Li F, Jiang Y, Xia M, et al.. Effect of the P/Ti ratio on the visible-light photocatalytic activity of P-doped TiO2. The Journal of Physical Chemistry C, 2009, 113(42): 18134–18141
https://doi.org/10.1021/jp902558z
21 Shan A Y, Ghazi T I M, Rashid S A. Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review. Applied Catalysis A: General, 2010, 389(1–2): 1–8
https://doi.org/10.1016/j.apcata.2010.08.053
22 Zhu B, Zou L. Trapping and decomposing of color compounds from recycled water by TiO2 coated activated carbon. Journal of Environmental Management, 2009, 90(11): 3217–3225
https://doi.org/10.1016/j.jenvman.2009.04.008 pmid: 19523747
23 Jin L, Dai B. TiO2 activation using acid-treated vermiculite as a support: Characteristics and photoreactivity. Applied Surface Science, 2012, 258(8): 3386–3392
https://doi.org/10.1016/j.apsusc.2011.11.017
24 Stathatos E, Papoulis D, Aggelopoulos C A, et al.. TiO2/palygorskite composite nanocrystalline films prepared by surfactant templating route: synergistic effect to the photocatalytic degradation of an azo-dye in water. Journal of Hazardous Materials, 2012, 211–212: 68–76
https://doi.org/10.1016/j.jhazmat.2011.11.055 pmid: 22177018
25 Chen Y, Wang K, Lou L. Photodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163(1–2): 281–287
https://doi.org/10.1016/j.jphotochem.2003.12.012
26 Li Y, Kim S J. Synthesis and characterization of nano titania particles embedded in mesoporous silica with both high photocatalytic activity and adsorption capability. The Journal of Physical Chemistry B, 2005, 109(25): 12309–12315
https://doi.org/10.1021/jp0512917 pmid: 16852519
27 Yu J C, Zhang L, Zheng Z, et al.. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chemistry of Materials, 2003, 15(11): 2280–2286
https://doi.org/10.1021/cm0340781
28 Monshi A, Foroughi M R, Monshi M R. Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World Journal of Nano Science and Engineering, 2012, 2(3): 154–160
https://doi.org/10.4236/wjnse.2012.23020
29 Yu J C, Zhang L Z, Yu J G. Rapid synthesis of mesoporous TiO2 with high photocatalytic activity by ultrasound-induced agglomeration. New Journal of Chemistry, 2002, 26(4): 416–420
https://doi.org/10.1039/b109173e
30 Thommes M, Kaneko K, Neimark A V, et al.. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015, 87(9–10): 1051–1069
31 Nadtochenko V, Denisov N, Gorenberg A, et al.. Correlations for photocatalytic activity and spectral features of the absorption band edge of TiO2 modified by thiourea. Applied Catalysis B: Environmental, 2009, 91(1–2): 460–469
https://doi.org/10.1016/j.apcatb.2009.06.015
32 Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. physica status solidi, 1966, 15(2): 627–637
33 Yamashita H, Ichihashi Y, Harada M, et al.. Photocatalytic degradation of 1-Octanol on anchored titanium oxide and on TiO2 powder catalysts. Journal of Catalysis, 1996, 158(1): 97–101
https://doi.org/10.1006/jcat.1996.0010
34 Rahman I A, Vejayakumaran P, Sipaut C S, et al.. Size-dependent physicochemical and optical properties of silica nanoparticles. Materials Chemistry and Physics, 2009, 114(1): 328–332
https://doi.org/10.1016/j.matchemphys.2008.09.068
35 Connor P A, McQuillan A J. Phosphate adsorption onto TiO2 from aqueous solutions: an in situ internal reflection infrared spectroscopic study. Langmuir, 1999, 15(8): 2916–2921
https://doi.org/10.1021/la980894p
36 Pucher P, Benmami M, Azouani R, et al.. Nano-TiO2 sols immobilized on porous silica as new efficient photocatalyst. Applied Catalysis A: General, 2007, 332(2): 297–303
https://doi.org/10.1016/j.apcata.2007.08.031
37 Lachheb H, Puzenat E, Houas A, et al.. Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Applied Catalysis B: Environmental, 2002, 39(1): 75–90
https://doi.org/10.1016/S0926-3373(02)00078-4
38 Zhu H, Jiang R, Xiao L, et al.. Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation. Journal of Hazardous Materials, 2009, 169(1–3): 933–940
https://doi.org/10.1016/j.jhazmat.2009.04.037 pmid: 19477069
39 Wang J, Li R, Zhang Z, et al.. Efficient photocatalytic degradation of organic dyes over titanium dioxide coating upconversion luminescence agent under visible and sunlight irradiation. Applied Catalysis A: General, 2008, 334(1–2): 227–233
https://doi.org/10.1016/j.apcata.2007.10.009
40 Ince N H, Tezcanlí G. Reactive dyestuff degradation by combined sonolysis and ozonation. Dyes and Pigments, 2001, 49(3): 145–153
https://doi.org/10.1016/S0143-7208(01)00019-5
41 Iida Y, Kozuka T, Tuziuti T, et al.. Sonochemically enhanced adsorption and degradation of methyl orange with activated aluminas. Ultrasonics, 2004, 42(1–9): 635–639
https://doi.org/10.1016/j.ultras.2004.01.092 pmid: 15047359
[1] Xuhua YE, Xiangyu YAN, Xini CHU, Shixiang ZUO, Wenjie LIU, Xiazhang LI, Chao YAO. Construction of upconversion fluoride/attapulgite nanocomposite for visible-light-driven photocatalytic nitrogen fixation[J]. Front. Mater. Sci., 2020, 14(4): 469-480.
[2] Xiangyu YAN, Da DAI, Kun MA, Shixiang ZUO, Wenjie LIU, Xiazhang LI, Chao YAO. Microwave hydrothermal synthesis of lanthanum oxyfluoride nanorods for photocatalytic nitrogen fixation: Effect of Pr doping[J]. Front. Mater. Sci., 2020, 14(1): 43-51.
[3] Timur Sh. ATABAEV, Anara MOLKENOVA. Upconversion optical nanomaterials applied for photocatalysis and photovoltaics: Recent advances and perspectives[J]. Front. Mater. Sci., 2019, 13(4): 335-341.
[4] Chuan DENG, Xianxian WEI, Ruixiang LIU, Yajie DU, Lei PAN, Xiang ZHONG, Jianhua SONG. Synthesis of sillenite-type Bi36Fe2O57 and elemental bismuth with visible-light photocatalytic activity for water treatment[J]. Front. Mater. Sci., 2018, 12(4): 415-425.
[5] Palepu Teja RAVINDAR, Vidya Sagar CHOPPELLA, Anil Kumar MOKSHAGUNDAM, M. KIRUBA, Sunil G. BABU, Korupolu Raghu BABU, L. John BERCHMANS, Gosipathala SREEDHAR. Enhanced visible-light-driven photocatalysis of Bi2YO4Cl heterostructures functionallized by bimetallic RhNi nanoparticles[J]. Front. Mater. Sci., 2018, 12(4): 405-414.
[6] Zhongchi WANG, Gongsheng SONG, Jianle XU, Qiang FU, Chunxu PAN. Electrospun titania fibers by incorporating graphene/Ag hybrids for the improved visible-light photocatalysis[J]. Front. Mater. Sci., 2018, 12(4): 379-391.
[7] Ruirui LIU, Zhijiang JI, Jing WANG, Jinjun ZHANG. Mesocrystalline TiO2/sepiolite composites for the effective degradation of methyl orange and methylene blue[J]. Front. Mater. Sci., 2018, 12(3): 292-303.
[8] Madhulika SHARMA, Pranab Kishore MOHAPATRA, Dhirendra BAHADUR. Improved photocatalytic degradation of organic dye using Ag3PO4/MoS2 nanocomposite[J]. Front. Mater. Sci., 2017, 11(4): 366-374.
[9] Hao WANG, Yuhan WU, Pengcheng WU, Shanshan CHEN, Xuhong GUO, Guihua MENG, Banghua PENG, Jianning WU, Zhiyong LIU. Environmentally benign chitosan as reductant and supporter for synthesis of Ag/AgCl/chitosan composites by one-step and their photocatalytic degradation performance under visible-light irradiation[J]. Front. Mater. Sci., 2017, 11(2): 130-138.
[10] Wei ZHAO,Zihao WANG,Lei ZHOU,Nianqi LIU,Hongxing WANG. Natural sunlight irradiated flower-like CuS synthesized from DMF solvothermal treatment[J]. Front. Mater. Sci., 2016, 10(3): 290-299.
[11] Wen-can ZHOU, Zheng-cao LI, Zheng-jun ZHANG, Ken ONDA, Sho OGIHARA, Yoichi OKIMOTO, Shin-ya KOSHIHARA, . Nanostructured TiO 2 photocatalyst and pump-probe spectroscopic study[J]. Front. Mater. Sci., 2009, 3(4): 403-408.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed