Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2019, Vol. 13 Issue (1) : 43-53    https://doi.org/10.1007/s11706-019-0447-2
RESEARCH ARTICLE
A novel black TiO2/ZnO nanocone arrays heterojunction on carbon cloth for highly efficient photoelectrochemical performance
Pengcheng WU1, Chang LIU1, Yan LUO1, Keliang WU1, Jianning WU1, Xuhong GUO1, Juan HOU1,2(), Zhiyong LIU1()
1. School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi 832003, China
2. College of Science/Key Laboratory of Ecophysics and Department of Physics of Xinjiang Bingtuan, Shihezi 832003, China
 Download: PDF(2356 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

ZnO nanocone arrays (NCAs) decorated with black TiO2 nanoparticles (B-TiO2 NPs) were uniformly anchored on the surface of carbon cloth (CC) directly by a simply electrochemical deposition method. Thus a novel B-TiO2 NPs/ZnO NCAs–CC hierarchical heterostructure was formed. It displayed superior performance and achieved a higher photocurrent over 0.4 mA·cm−2 before the onset of the dark current, attributed to the separation of the photogenerated electron–hole pair. Based on the B-TiO2 NPs/ZnO NCAs–CC heterostructure, the catalyst was fabricated for promoting the separation of charge carriers. Moreover, the introduction of Ti3+ and oxygen vacancies on the surface of TiO2 NPs expanded the absorption band edge and enhanced the electrical conductivity as well as the charge transportation on the catalytic surface. It indicates that the B-TiO2 NPs/ZnO NCAs–CC composite is beneficial to the improvement of the photoelectrochemical (PEC) activity.

Keywords black TiO2 nanoparticles      ZnO nanocones arrays      carbon cloth     
Corresponding Author(s): Juan HOU,Zhiyong LIU   
Online First Date: 21 February 2019    Issue Date: 07 March 2019
 Cite this article:   
Pengcheng WU,Chang LIU,Yan LUO, et al. A novel black TiO2/ZnO nanocone arrays heterojunction on carbon cloth for highly efficient photoelectrochemical performance[J]. Front. Mater. Sci., 2019, 13(1): 43-53.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-019-0447-2
https://academic.hep.com.cn/foms/EN/Y2019/V13/I1/43
Fig.1  XRD patterns of CC, ZnO NCAs?CC, TiO2 NPs/ZnO NCAs?CC and B-TiO2 NPs/ZnO NCAs?CC.
Fig.2  FESEM images of (a)(b) CC, (c)(d) ZnO NCAs and (e)(f) TiO2 NPs/ZnO NCAs?CC composites grown on CC at different magnifications.
Fig.3  (a) TEM and (b) HRTEM images of the TiO2 NPs/ZnO NCAs.
Fig.4  EDS spectrum of TiO2 NPs/ZnO NCAs?CC.
Fig.5  XPS results of TiO2 NPs/ZnO NCAs?CC and B-TiO2 NPs/ZnO NCAs?CC: (a) survey spectra; (b) Zn 2p; (c) Ti 2p; (d) O 1s.
Fig.6  ESR spectra of TiO2 NPs/ZnO NCAs and B-TiO2 NPs/ZnO NCAs–CC.
Fig.7  (a) UV-vis absorption spectra and (b) extracted bandgap profiles by the Kubelka–Munk function of TiO2 NPs/ZnO NCAs–CC and B-TiO2 NPs/ZnO NCAs–CC.
Fig.8  PL spectra of ZnO NCAs?CC, TiO2 NPs/ZnO NCAs?CC and B-TiO2 NPs/ZnO NCAs?CC.
Fig.9  (a) LSV curves corresponding to different reduction times. (b) LSV curves of CC, ZnO NCAs?CC, TiO2 NPs/ZnO NCAs?CC and B-TiO2 NPs/ZnO NCAs?CC. (c) Photocurrent densities of ZnO NCAs?CC, TiO2 NPs/ZnO NCAs?CC and B-TiO2 NPs/ZnO NCAs?CC at 0 V (Ag/AgCl) under dark and illumination cycles. (d) EIS Nyquist plots of CC, ZnO NCAs?CC, TiO2 NPs/ZnO NCAs?CC and B-TiO2 NPs/ZnO NCAs?CC.
Fig.10  MS plots for ZnO NCAs?CC, TiO2 NPs/ZnO NCAs?CC and B-TiO2 NPs/ZnO NCAs?CC in the 0.5 mol·L−1 Na2SO4 solution at 1 kHz.
Fig.11  Scheme 1 ?A scheme illustrating the mechanism for charge transport and transfer process of the B-TiO2 NPs/ZnO NCAs?CC system.
  Fig. S1 TEM image of TiO2 NPs/ZnO NCAs.
  Fig. S2 Photocurrent densities of samples at 1.23 V vs. RHE under AM 1.5-irradiation.
  Fig. S3 FESEM image of the NaBH4 treatment for 90 min.
1 YLiu, L Liang, CXiao, et al.. Promoting photogenerated holes utilization in pore-rich WO3 ultrathin nanosheets for efficient oxygen-evolving photoanode. Advanced Energy Materials, 2016, 6(23): 1600437
https://doi.org/10.1002/aenm.201600437
2 JYang, J K Cooper, F M Toma, et al.. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes. Nature Materials, 2017, 16(3): 335–341
https://doi.org/10.1038/nmat4794 pmid: 27820814
3 HLi, H Yu, XQuan, et al.. Uncovering the key role of the Fermi level of the electron mediator in a Z-scheme photocatalyst by detecting the charge transfer process of WO3–metal–gC3N4 (metal= Cu, Ag, Au). ACS Applied Materials & Interfaces, 2016, 8(3): 2111–2119
https://doi.org/10.1021/acsami.5b10613 pmid: 26728189
4 ZDohcevic-Mitrovic, SStojadinovic, L Lozzi, et al.. WO3/TiO2 composite coatings: Structural, optical and photocatalytic properties. Materials Research Bulletin, 2016, 83: 217–224 doi:10.1016/j.materresbull.2016.06.011
5 TLi, J He, BPeña, et al.. Curing BiVO4 photoanodes with ultraviolet light enhances photoelectrocatalysis. Angewandte Chemie International Edition, 2016, 55(5): 1769–1772
https://doi.org/10.1002/anie.201509567 pmid: 26689617
6 LYan, W Zhao, ZLiu. 1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting. Dalton Transactions, 2016, 45(28): 11346–11352
https://doi.org/10.1039/C6DT02027E pmid: 27328331
7 J SKang, Y Noh, JKim, et al.. Iron oxide photoelectrode with multidimensional architecture for highly efficient photoelectrochemical water splitting. Angewandte Chemie International Edition, 2017, 56(23): 6583–6588
https://doi.org/10.1002/anie.201703326 pmid: 28471078
8 ADi Mauro, M Cantarella, GNicotra, et al.. Low temperature atomic layer deposition of ZnO: Applications in photocatalysis. Applied Catalysis B: Environmental, 2016, 196: 68–76
https://doi.org/10.1016/j.apcatb.2016.05.015
9 PYang, X Xiao, YLi, et al.. Hydrogenated ZnO core–shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano, 2013, 7(3): 2617–2626
https://doi.org/10.1021/nn306044d pmid: 23368853
10 SPark, S Lee, DKim, et al.. Fabrication of TiO2/tin-doped indium oxide-based photoelectrode coated with overlayer materials and its photoelectrochemical behavior. Journal of Nanoscience and Nanotechnology, 2012, 12(2): 1390–1394
https://doi.org/10.1166/jnn.2012.4636 pmid: 22629963
11 HZhao, Q Wu, JHou, et al.. Enhanced light harvesting and electron collection in quantum dot sensitized solar cells by TiO2 passivation on ZnO nanorod arrays. Science China Materials, 2017, 60(3): 239–250
https://doi.org/10.1007/s40843-016-9008-2
12 YWang, Y Z Zheng, S Lu, et al.. Visible-light-responsive TiO2-coated ZnO:I nanorod array films with enhanced photoelectrochemical and photocatalytic performance. ACS Applied Materials & Interfaces, 2015, 7(11): 6093–6101
https://doi.org/10.1021/acsami.5b00980 pmid: 25742121
13 TZou, C Wang, RTan, et al.. Preparation of pompon-like ZnO-PANI heterostructure and its applications for the treatment of typical water pollutants under visible light. Journal of Hazardous Materials, 2017, 338: 276–286
https://doi.org/10.1016/j.jhazmat.2017.05.042 pmid: 28578229
14 WYu, D Xu, TPeng. Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(39): 19936–19947
https://doi.org/10.1039/C5TA05503B
15 WFeng, L Lin, HLi, et al.. Hydrogenated TiO2/ZnO heterojunction nanorod arrays with enhanced performance for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2017, 42(7): 3938–3946
https://doi.org/10.1016/j.ijhydene.2016.10.087
16 HZhao, F Huang, JHou, et al.. Efficiency enhancement of quantum dot sensitized TiO2/ZnO nanorod arrays solar cells by plasmonic Ag nanoparticles. ACS Applied Materials & Interfaces, 2016, 8(40): 26675–26682
https://doi.org/10.1021/acsami.6b06386 pmid: 27648815
17 MZalfani, B van der Schueren, MMahdouani, et al.. ZnO quantum dots decorated 3DOM TiO2 nanocomposites: Symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants. Applied Catalysis B: Environmental, 2016, 199: 187–198
https://doi.org/10.1016/j.apcatb.2016.06.016
18 CCheng, H Zhang, WRen, et al.. Three dimensional urchin-like ordered hollow TiO2/ZnO nanorods structure as efficient photoelectrochemical anode. Nano Energy, 2013, 2(5): 779–786
https://doi.org/10.1016/j.nanoen.2013.01.010
19 XChen, L Liu, FHuang. Black titanium dioxide (TiO2) nanomaterials. Chemical Society Reviews, 2015, 44(7): 1861–1885
https://doi.org/10.1039/C4CS00330F pmid: 25590565
20 XChen, L Liu, P YYu, et al.. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331(6018): 746–750
https://doi.org/10.1126/science.1200448 pmid: 21252313
21 KZhang, J H Park. Surface localization of defects in black TiO2: Enhancing photoactivity or reactivity. The Journal of Physical Chemistry Letters, 2017, 8(1): 199–207
https://doi.org/10.1021/acs.jpclett.6b02289 pmid: 27991794
22 BWang, S Shen, S SMao. Black TiO2 for solar hydrogen conversion. Journal of Materiomics, 2017, 3(2): 96–111
https://doi.org/10.1016/j.jmat.2017.02.001
23 GZhang, S Hou, HZhang, et al.. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core–shell nanorod arrays on a carbon cloth anode. Advanced Materials, 2015, 27(14): 2400–2405
https://doi.org/10.1002/adma.201405222 pmid: 25728828
24 J XFeng, H Xu, Y TDong, et al.. Efficient hydrogen evolution electrocatalysis using cobalt nanotubes decorated with titanium dioxide nanodots. Angewandte Chemie International Edition, 2017, 56(11): 2960–2964
https://doi.org/10.1002/anie.201611767 pmid: 28140498
25 YLiu, N Fu, GZhang, et al.. Design of hierarchical Ni–Co@Ni–Co layered double hydroxide core–shell structured nanotube array for high-performance flexible all-solid-state battery-type supercapacitors. Advanced Functional Materials, 2017, 27(8): 1605307
https://doi.org/10.1002/adfm.201605307
26 SMeng, Y Hong, ZDai, et al.. Simultaneous detection of dihydroxybenzene isomers with ZnO nanorod/carbon cloth electrodes. ACS Applied Materials & Interfaces, 2017, 9(14): 12453–12460
https://doi.org/10.1021/acsami.7b00546 pmid: 28337905
27 YHou, Z Wen, SCui, et al.. Strongly coupled ternary hybrid aerogels of N-deficient porous graphitic-C3N4 nanosheets/N-doped graphene/NiFe-layered double hydroxide for solar-driven photoelectrochemical water oxidation. Nano Letters, 2016, 16(4): 2268–2277
https://doi.org/10.1021/acs.nanolett.5b04496 pmid: 26963768
28 MDing, N Yao, CWang, et al.. ZnO@CdS core–shell heterostructures: Fabrication, enhanced photocatalytic, and photoelectrochemical performance. Nanoscale Research Letters, 2016, 11(1): 205 (7 pages)
https://doi.org/10.1186/s11671-016-1432-7 pmid: 27090656
29 QKang, J Cao, YZhang, et al.. Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(18): 5766–5774
https://doi.org/10.1039/c3ta10689f
30 GZhu, T Lin, XLü, et al.. Black brookite titania with high solar absorption and excellent photocatalytic performance. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(34): 9650–9653
https://doi.org/10.1039/c3ta11782k
31 JDong, J Han, YLiu, et al.. Defective black TiO2 synthesized via anodization for visible-light photocatalysis. ACS Applied Materials & Interfaces, 2014, 6(3): 1385–1388
https://doi.org/10.1021/am405549p pmid: 24490636
32 NLiu, C Schneider, DFreitag, et al.. Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. Nano Letters, 2014, 14(6): 3309–3313
https://doi.org/10.1021/nl500710j pmid: 24797919
33 HYin, T Lin, CYang, et al.. Gray TiO2 nanowires synthesized by aluminum-mediated reduction and their excellent photocatalytic activity for water cleaning. Chemistry, 2013, 19(40): 13313–13316
https://doi.org/10.1002/chem.201302286 pmid: 24014465
34 ZWang, C Yang, TLin, et al.. H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Advanced Functional Materials, 2013, 23(43): 5444–5450
https://doi.org/10.1002/adfm.201300486
35 HCai, P Liang, ZHu, et al.. Enhanced photoelectrochemical activity of ZnO-coated TiO2 nanotubes and its dependence on ZnO coating thickness. Nanoscale Research Letters, 2016, 11(1): 104 (11 pages)
https://doi.org/10.1186/s11671-016-1309-9 pmid: 26911568
36 SGuo, X Zhao, WZhang, et al.. Optimization of electrolyte to significantly improve photoelectrochemical water splitting performance of ZnO nanowire arrays. Materials Science and Engineering B, 2018, 227: 129–135
https://doi.org/10.1016/j.mseb.2017.09.020
37 H T TTran, HKosslick, M FIbad, et al.. Photocatalytic performance of highly active brookite in the degradation of hazardous organic compounds compared to anatase and rutile. Applied Catalysis B: Environmental, 2017, 200: 647–658
https://doi.org/10.1016/j.apcatb.2016.07.017
38 GZhou, L Shen, ZXing, et al.. Ti3+ self-doped mesoporous black TiO2/graphene assemblies for unpredicted-high solar-driven photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2017, 505: 1031–1038
https://doi.org/10.1016/j.jcis.2017.06.097 pmid: 28697542
39 CDu, J Wang, XLiu, et al.. Ultrathin CoOx-modified hematite with low onset potential for solar water oxidation. Physical Chemistry Chemical Physics, 2017, 19(21): 14178–14184
https://doi.org/10.1039/C7CP01588G pmid: 28530305
40 ZWang, Y Han, YZeng, et al.. Activated carbon fiber paper with exceptional capacitive performance as a robust electrode for supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(16): 5828–5833
https://doi.org/10.1039/C6TA02056A
41 LCai, F Ren, MWang, et al.. V ions implanted ZnO nanorod arrays for photoelectrochemical water splitting under visible light. International Journal of Hydrogen Energy, 2015, 40(3): 1394–1401
https://doi.org/10.1016/j.ijhydene.2014.11.114
42 CLiu, P Wu, KWu, et al.. Advanced bi-functional CoPi co-catalyst-decorated g-C3N4 nanosheets coupled with ZnO nanorod arrays as integrated photoanodes. Dalton Transactions, 2018, 47(18): 6605–6614
https://doi.org/10.1039/C7DT02459B pmid: 29700514
43 F YSu, W D Zhang. Fabrication and photoelectrochemical property of In2O3/ZnO composite nanotube arrays using ZnO nanorods as self-sacrificing templates. Materials Letters, 2018, 211: 65–68
https://doi.org/10.1016/j.matlet.2017.09.085
44 P GRamos, E Flores, L ASánchez, et al.. Enhanced photoelectrochemical performance and photocatalytic activity of ZnO/TiO2 nanostructures fabricated by an electrostatically modified electrospinning. Applied Surface Science, 2017, 426: 844–851
https://doi.org/10.1016/j.apsusc.2017.07.218
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed