A novel black TiO2/ZnO nanocone arrays heterojunction on carbon cloth for highly efficient photoelectrochemical performance
Pengcheng WU1, Chang LIU1, Yan LUO1, Keliang WU1, Jianning WU1, Xuhong GUO1, Juan HOU1,2(), Zhiyong LIU1()
1. School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi 832003, China 2. College of Science/Key Laboratory of Ecophysics and Department of Physics of Xinjiang Bingtuan, Shihezi 832003, China
ZnO nanocone arrays (NCAs) decorated with black TiO2 nanoparticles (B-TiO2 NPs) were uniformly anchored on the surface of carbon cloth (CC) directly by a simply electrochemical deposition method. Thus a novel B-TiO2 NPs/ZnO NCAs–CC hierarchical heterostructure was formed. It displayed superior performance and achieved a higher photocurrent over 0.4 mA·cm−2 before the onset of the dark current, attributed to the separation of the photogenerated electron–hole pair. Based on the B-TiO2 NPs/ZnO NCAs–CC heterostructure, the catalyst was fabricated for promoting the separation of charge carriers. Moreover, the introduction of Ti3+ and oxygen vacancies on the surface of TiO2 NPs expanded the absorption band edge and enhanced the electrical conductivity as well as the charge transportation on the catalytic surface. It indicates that the B-TiO2 NPs/ZnO NCAs–CC composite is beneficial to the improvement of the photoelectrochemical (PEC) activity.
Fig.1 XRD patterns of CC, ZnO NCAs?CC, TiO2 NPs/ZnO NCAs?CC and B-TiO2 NPs/ZnO NCAs?CC.
Fig.2 FESEM images of (a)(b) CC, (c)(d) ZnO NCAs and (e)(f) TiO2 NPs/ZnO NCAs?CC composites grown on CC at different magnifications.
Fig.3 (a) TEM and (b) HRTEM images of the TiO2 NPs/ZnO NCAs.
Fig.4 EDS spectrum of TiO2 NPs/ZnO NCAs?CC.
Fig.5 XPS results of TiO2 NPs/ZnO NCAs?CC and B-TiO2 NPs/ZnO NCAs?CC: (a) survey spectra; (b) Zn 2p; (c) Ti 2p; (d) O 1s.
Fig.6 ESR spectra of TiO2 NPs/ZnO NCAs and B-TiO2 NPs/ZnO NCAs–CC.
Fig.7 (a) UV-vis absorption spectra and (b) extracted bandgap profiles by the Kubelka–Munk function of TiO2 NPs/ZnO NCAs–CC and B-TiO2 NPs/ZnO NCAs–CC.
Fig.8 PL spectra of ZnO NCAs?CC, TiO2 NPs/ZnO NCAs?CC and B-TiO2 NPs/ZnO NCAs?CC.
Fig.9 (a) LSV curves corresponding to different reduction times. (b) LSV curves of CC, ZnO NCAs?CC, TiO2 NPs/ZnO NCAs?CC and B-TiO2 NPs/ZnO NCAs?CC. (c) Photocurrent densities of ZnO NCAs?CC, TiO2 NPs/ZnO NCAs?CC and B-TiO2 NPs/ZnO NCAs?CC at 0 V (Ag/AgCl) under dark and illumination cycles. (d) EIS Nyquist plots of CC, ZnO NCAs?CC, TiO2 NPs/ZnO NCAs?CC and B-TiO2 NPs/ZnO NCAs?CC.
Fig.10 MS plots for ZnO NCAs?CC, TiO2 NPs/ZnO NCAs?CC and B-TiO2 NPs/ZnO NCAs?CC in the 0.5 mol·L−1 Na2SO4 solution at 1 kHz.
Fig.11 Scheme 1 ?A scheme illustrating the mechanism for charge transport and transfer process of the B-TiO2 NPs/ZnO NCAs?CC system.
Fig. S1 TEM image of TiO2 NPs/ZnO NCAs.
Fig. S2 Photocurrent densities of samples at 1.23 V vs. RHE under AM 1.5-irradiation.
Fig. S3 FESEM image of the NaBH4 treatment for 90 min.
1
YLiu, L Liang, CXiao, et al.. Promoting photogenerated holes utilization in pore-rich WO3 ultrathin nanosheets for efficient oxygen-evolving photoanode. Advanced Energy Materials, 2016, 6(23): 1600437 https://doi.org/10.1002/aenm.201600437
2
JYang, J K Cooper, F M Toma, et al.. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes. Nature Materials, 2017, 16(3): 335–341 https://doi.org/10.1038/nmat4794
pmid: 27820814
3
HLi, H Yu, XQuan, et al.. Uncovering the key role of the Fermi level of the electron mediator in a Z-scheme photocatalyst by detecting the charge transfer process of WO3–metal–gC3N4 (metal= Cu, Ag, Au). ACS Applied Materials & Interfaces, 2016, 8(3): 2111–2119 https://doi.org/10.1021/acsami.5b10613
pmid: 26728189
4
ZDohcevic-Mitrovic, SStojadinovic, L Lozzi, et al.. WO3/TiO2 composite coatings: Structural, optical and photocatalytic properties. Materials Research Bulletin, 2016, 83: 217–224 doi:10.1016/j.materresbull.2016.06.011
5
TLi, J He, BPeña, et al.. Curing BiVO4 photoanodes with ultraviolet light enhances photoelectrocatalysis. Angewandte Chemie International Edition, 2016, 55(5): 1769–1772 https://doi.org/10.1002/anie.201509567
pmid: 26689617
6
LYan, W Zhao, ZLiu. 1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting. Dalton Transactions, 2016, 45(28): 11346–11352 https://doi.org/10.1039/C6DT02027E
pmid: 27328331
7
J SKang, Y Noh, JKim, et al.. Iron oxide photoelectrode with multidimensional architecture for highly efficient photoelectrochemical water splitting. Angewandte Chemie International Edition, 2017, 56(23): 6583–6588 https://doi.org/10.1002/anie.201703326
pmid: 28471078
8
ADi Mauro, M Cantarella, GNicotra, et al.. Low temperature atomic layer deposition of ZnO: Applications in photocatalysis. Applied Catalysis B: Environmental, 2016, 196: 68–76 https://doi.org/10.1016/j.apcatb.2016.05.015
9
PYang, X Xiao, YLi, et al.. Hydrogenated ZnO core–shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano, 2013, 7(3): 2617–2626 https://doi.org/10.1021/nn306044d
pmid: 23368853
10
SPark, S Lee, DKim, et al.. Fabrication of TiO2/tin-doped indium oxide-based photoelectrode coated with overlayer materials and its photoelectrochemical behavior. Journal of Nanoscience and Nanotechnology, 2012, 12(2): 1390–1394 https://doi.org/10.1166/jnn.2012.4636
pmid: 22629963
11
HZhao, Q Wu, JHou, et al.. Enhanced light harvesting and electron collection in quantum dot sensitized solar cells by TiO2 passivation on ZnO nanorod arrays. Science China Materials, 2017, 60(3): 239–250 https://doi.org/10.1007/s40843-016-9008-2
12
YWang, Y Z Zheng, S Lu, et al.. Visible-light-responsive TiO2-coated ZnO:I nanorod array films with enhanced photoelectrochemical and photocatalytic performance. ACS Applied Materials & Interfaces, 2015, 7(11): 6093–6101 https://doi.org/10.1021/acsami.5b00980
pmid: 25742121
13
TZou, C Wang, RTan, et al.. Preparation of pompon-like ZnO-PANI heterostructure and its applications for the treatment of typical water pollutants under visible light. Journal of Hazardous Materials, 2017, 338: 276–286 https://doi.org/10.1016/j.jhazmat.2017.05.042
pmid: 28578229
14
WYu, D Xu, TPeng. Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(39): 19936–19947 https://doi.org/10.1039/C5TA05503B
15
WFeng, L Lin, HLi, et al.. Hydrogenated TiO2/ZnO heterojunction nanorod arrays with enhanced performance for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2017, 42(7): 3938–3946 https://doi.org/10.1016/j.ijhydene.2016.10.087
16
HZhao, F Huang, JHou, et al.. Efficiency enhancement of quantum dot sensitized TiO2/ZnO nanorod arrays solar cells by plasmonic Ag nanoparticles. ACS Applied Materials & Interfaces, 2016, 8(40): 26675–26682 https://doi.org/10.1021/acsami.6b06386
pmid: 27648815
17
MZalfani, B van der Schueren, MMahdouani, et al.. ZnO quantum dots decorated 3DOM TiO2 nanocomposites: Symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants. Applied Catalysis B: Environmental, 2016, 199: 187–198 https://doi.org/10.1016/j.apcatb.2016.06.016
18
CCheng, H Zhang, WRen, et al.. Three dimensional urchin-like ordered hollow TiO2/ZnO nanorods structure as efficient photoelectrochemical anode. Nano Energy, 2013, 2(5): 779–786 https://doi.org/10.1016/j.nanoen.2013.01.010
XChen, L Liu, P YYu, et al.. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331(6018): 746–750 https://doi.org/10.1126/science.1200448
pmid: 21252313
21
KZhang, J H Park. Surface localization of defects in black TiO2: Enhancing photoactivity or reactivity. The Journal of Physical Chemistry Letters, 2017, 8(1): 199–207 https://doi.org/10.1021/acs.jpclett.6b02289
pmid: 27991794
GZhang, S Hou, HZhang, et al.. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core–shell nanorod arrays on a carbon cloth anode. Advanced Materials, 2015, 27(14): 2400–2405 https://doi.org/10.1002/adma.201405222
pmid: 25728828
24
J XFeng, H Xu, Y TDong, et al.. Efficient hydrogen evolution electrocatalysis using cobalt nanotubes decorated with titanium dioxide nanodots. Angewandte Chemie International Edition, 2017, 56(11): 2960–2964 https://doi.org/10.1002/anie.201611767
pmid: 28140498
25
YLiu, N Fu, GZhang, et al.. Design of hierarchical Ni–Co@Ni–Co layered double hydroxide core–shell structured nanotube array for high-performance flexible all-solid-state battery-type supercapacitors. Advanced Functional Materials, 2017, 27(8): 1605307 https://doi.org/10.1002/adfm.201605307
26
SMeng, Y Hong, ZDai, et al.. Simultaneous detection of dihydroxybenzene isomers with ZnO nanorod/carbon cloth electrodes. ACS Applied Materials & Interfaces, 2017, 9(14): 12453–12460 https://doi.org/10.1021/acsami.7b00546
pmid: 28337905
27
YHou, Z Wen, SCui, et al.. Strongly coupled ternary hybrid aerogels of N-deficient porous graphitic-C3N4 nanosheets/N-doped graphene/NiFe-layered double hydroxide for solar-driven photoelectrochemical water oxidation. Nano Letters, 2016, 16(4): 2268–2277 https://doi.org/10.1021/acs.nanolett.5b04496
pmid: 26963768
28
MDing, N Yao, CWang, et al.. ZnO@CdS core–shell heterostructures: Fabrication, enhanced photocatalytic, and photoelectrochemical performance. Nanoscale Research Letters, 2016, 11(1): 205 (7 pages) https://doi.org/10.1186/s11671-016-1432-7
pmid: 27090656
29
QKang, J Cao, YZhang, et al.. Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(18): 5766–5774 https://doi.org/10.1039/c3ta10689f
30
GZhu, T Lin, XLü, et al.. Black brookite titania with high solar absorption and excellent photocatalytic performance. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(34): 9650–9653 https://doi.org/10.1039/c3ta11782k
31
JDong, J Han, YLiu, et al.. Defective black TiO2 synthesized via anodization for visible-light photocatalysis. ACS Applied Materials & Interfaces, 2014, 6(3): 1385–1388 https://doi.org/10.1021/am405549p
pmid: 24490636
32
NLiu, C Schneider, DFreitag, et al.. Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. Nano Letters, 2014, 14(6): 3309–3313 https://doi.org/10.1021/nl500710j
pmid: 24797919
33
HYin, T Lin, CYang, et al.. Gray TiO2 nanowires synthesized by aluminum-mediated reduction and their excellent photocatalytic activity for water cleaning. Chemistry, 2013, 19(40): 13313–13316 https://doi.org/10.1002/chem.201302286
pmid: 24014465
34
ZWang, C Yang, TLin, et al.. H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Advanced Functional Materials, 2013, 23(43): 5444–5450 https://doi.org/10.1002/adfm.201300486
35
HCai, P Liang, ZHu, et al.. Enhanced photoelectrochemical activity of ZnO-coated TiO2 nanotubes and its dependence on ZnO coating thickness. Nanoscale Research Letters, 2016, 11(1): 104 (11 pages) https://doi.org/10.1186/s11671-016-1309-9
pmid: 26911568
36
SGuo, X Zhao, WZhang, et al.. Optimization of electrolyte to significantly improve photoelectrochemical water splitting performance of ZnO nanowire arrays. Materials Science and Engineering B, 2018, 227: 129–135 https://doi.org/10.1016/j.mseb.2017.09.020
37
H T TTran, HKosslick, M FIbad, et al.. Photocatalytic performance of highly active brookite in the degradation of hazardous organic compounds compared to anatase and rutile. Applied Catalysis B: Environmental, 2017, 200: 647–658 https://doi.org/10.1016/j.apcatb.2016.07.017
38
GZhou, L Shen, ZXing, et al.. Ti3+ self-doped mesoporous black TiO2/graphene assemblies for unpredicted-high solar-driven photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2017, 505: 1031–1038 https://doi.org/10.1016/j.jcis.2017.06.097
pmid: 28697542
39
CDu, J Wang, XLiu, et al.. Ultrathin CoOx-modified hematite with low onset potential for solar water oxidation. Physical Chemistry Chemical Physics, 2017, 19(21): 14178–14184 https://doi.org/10.1039/C7CP01588G
pmid: 28530305
40
ZWang, Y Han, YZeng, et al.. Activated carbon fiber paper with exceptional capacitive performance as a robust electrode for supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(16): 5828–5833 https://doi.org/10.1039/C6TA02056A
41
LCai, F Ren, MWang, et al.. V ions implanted ZnO nanorod arrays for photoelectrochemical water splitting under visible light. International Journal of Hydrogen Energy, 2015, 40(3): 1394–1401 https://doi.org/10.1016/j.ijhydene.2014.11.114
42
CLiu, P Wu, KWu, et al.. Advanced bi-functional CoPi co-catalyst-decorated g-C3N4 nanosheets coupled with ZnO nanorod arrays as integrated photoanodes. Dalton Transactions, 2018, 47(18): 6605–6614 https://doi.org/10.1039/C7DT02459B
pmid: 29700514
43
F YSu, W D Zhang. Fabrication and photoelectrochemical property of In2O3/ZnO composite nanotube arrays using ZnO nanorods as self-sacrificing templates. Materials Letters, 2018, 211: 65–68 https://doi.org/10.1016/j.matlet.2017.09.085
44
P GRamos, E Flores, L ASánchez, et al.. Enhanced photoelectrochemical performance and photocatalytic activity of ZnO/TiO2 nanostructures fabricated by an electrostatically modified electrospinning. Applied Surface Science, 2017, 426: 844–851 https://doi.org/10.1016/j.apsusc.2017.07.218