|
|
A novel black TiO2/ZnO nanocone arrays heterojunction on carbon cloth for highly efficient photoelectrochemical performance |
Pengcheng WU1, Chang LIU1, Yan LUO1, Keliang WU1, Jianning WU1, Xuhong GUO1, Juan HOU1,2( ), Zhiyong LIU1( ) |
1. School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi 832003, China 2. College of Science/Key Laboratory of Ecophysics and Department of Physics of Xinjiang Bingtuan, Shihezi 832003, China |
|
|
Abstract ZnO nanocone arrays (NCAs) decorated with black TiO2 nanoparticles (B-TiO2 NPs) were uniformly anchored on the surface of carbon cloth (CC) directly by a simply electrochemical deposition method. Thus a novel B-TiO2 NPs/ZnO NCAs–CC hierarchical heterostructure was formed. It displayed superior performance and achieved a higher photocurrent over 0.4 mA·cm−2 before the onset of the dark current, attributed to the separation of the photogenerated electron–hole pair. Based on the B-TiO2 NPs/ZnO NCAs–CC heterostructure, the catalyst was fabricated for promoting the separation of charge carriers. Moreover, the introduction of Ti3+ and oxygen vacancies on the surface of TiO2 NPs expanded the absorption band edge and enhanced the electrical conductivity as well as the charge transportation on the catalytic surface. It indicates that the B-TiO2 NPs/ZnO NCAs–CC composite is beneficial to the improvement of the photoelectrochemical (PEC) activity.
|
Keywords
black TiO2 nanoparticles
ZnO nanocones arrays
carbon cloth
|
Corresponding Author(s):
Juan HOU,Zhiyong LIU
|
Online First Date: 21 February 2019
Issue Date: 07 March 2019
|
|
1 |
YLiu, L Liang, CXiao, et al.. Promoting photogenerated holes utilization in pore-rich WO3 ultrathin nanosheets for efficient oxygen-evolving photoanode. Advanced Energy Materials, 2016, 6(23): 1600437
https://doi.org/10.1002/aenm.201600437
|
2 |
JYang, J K Cooper, F M Toma, et al.. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes. Nature Materials, 2017, 16(3): 335–341
https://doi.org/10.1038/nmat4794
pmid: 27820814
|
3 |
HLi, H Yu, XQuan, et al.. Uncovering the key role of the Fermi level of the electron mediator in a Z-scheme photocatalyst by detecting the charge transfer process of WO3–metal–gC3N4 (metal= Cu, Ag, Au). ACS Applied Materials & Interfaces, 2016, 8(3): 2111–2119
https://doi.org/10.1021/acsami.5b10613
pmid: 26728189
|
4 |
ZDohcevic-Mitrovic, SStojadinovic, L Lozzi, et al.. WO3/TiO2 composite coatings: Structural, optical and photocatalytic properties. Materials Research Bulletin, 2016, 83: 217–224 doi:10.1016/j.materresbull.2016.06.011
|
5 |
TLi, J He, BPeña, et al.. Curing BiVO4 photoanodes with ultraviolet light enhances photoelectrocatalysis. Angewandte Chemie International Edition, 2016, 55(5): 1769–1772
https://doi.org/10.1002/anie.201509567
pmid: 26689617
|
6 |
LYan, W Zhao, ZLiu. 1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting. Dalton Transactions, 2016, 45(28): 11346–11352
https://doi.org/10.1039/C6DT02027E
pmid: 27328331
|
7 |
J SKang, Y Noh, JKim, et al.. Iron oxide photoelectrode with multidimensional architecture for highly efficient photoelectrochemical water splitting. Angewandte Chemie International Edition, 2017, 56(23): 6583–6588
https://doi.org/10.1002/anie.201703326
pmid: 28471078
|
8 |
ADi Mauro, M Cantarella, GNicotra, et al.. Low temperature atomic layer deposition of ZnO: Applications in photocatalysis. Applied Catalysis B: Environmental, 2016, 196: 68–76
https://doi.org/10.1016/j.apcatb.2016.05.015
|
9 |
PYang, X Xiao, YLi, et al.. Hydrogenated ZnO core–shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano, 2013, 7(3): 2617–2626
https://doi.org/10.1021/nn306044d
pmid: 23368853
|
10 |
SPark, S Lee, DKim, et al.. Fabrication of TiO2/tin-doped indium oxide-based photoelectrode coated with overlayer materials and its photoelectrochemical behavior. Journal of Nanoscience and Nanotechnology, 2012, 12(2): 1390–1394
https://doi.org/10.1166/jnn.2012.4636
pmid: 22629963
|
11 |
HZhao, Q Wu, JHou, et al.. Enhanced light harvesting and electron collection in quantum dot sensitized solar cells by TiO2 passivation on ZnO nanorod arrays. Science China Materials, 2017, 60(3): 239–250
https://doi.org/10.1007/s40843-016-9008-2
|
12 |
YWang, Y Z Zheng, S Lu, et al.. Visible-light-responsive TiO2-coated ZnO:I nanorod array films with enhanced photoelectrochemical and photocatalytic performance. ACS Applied Materials & Interfaces, 2015, 7(11): 6093–6101
https://doi.org/10.1021/acsami.5b00980
pmid: 25742121
|
13 |
TZou, C Wang, RTan, et al.. Preparation of pompon-like ZnO-PANI heterostructure and its applications for the treatment of typical water pollutants under visible light. Journal of Hazardous Materials, 2017, 338: 276–286
https://doi.org/10.1016/j.jhazmat.2017.05.042
pmid: 28578229
|
14 |
WYu, D Xu, TPeng. Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(39): 19936–19947
https://doi.org/10.1039/C5TA05503B
|
15 |
WFeng, L Lin, HLi, et al.. Hydrogenated TiO2/ZnO heterojunction nanorod arrays with enhanced performance for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2017, 42(7): 3938–3946
https://doi.org/10.1016/j.ijhydene.2016.10.087
|
16 |
HZhao, F Huang, JHou, et al.. Efficiency enhancement of quantum dot sensitized TiO2/ZnO nanorod arrays solar cells by plasmonic Ag nanoparticles. ACS Applied Materials & Interfaces, 2016, 8(40): 26675–26682
https://doi.org/10.1021/acsami.6b06386
pmid: 27648815
|
17 |
MZalfani, B van der Schueren, MMahdouani, et al.. ZnO quantum dots decorated 3DOM TiO2 nanocomposites: Symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants. Applied Catalysis B: Environmental, 2016, 199: 187–198
https://doi.org/10.1016/j.apcatb.2016.06.016
|
18 |
CCheng, H Zhang, WRen, et al.. Three dimensional urchin-like ordered hollow TiO2/ZnO nanorods structure as efficient photoelectrochemical anode. Nano Energy, 2013, 2(5): 779–786
https://doi.org/10.1016/j.nanoen.2013.01.010
|
19 |
XChen, L Liu, FHuang. Black titanium dioxide (TiO2) nanomaterials. Chemical Society Reviews, 2015, 44(7): 1861–1885
https://doi.org/10.1039/C4CS00330F
pmid: 25590565
|
20 |
XChen, L Liu, P YYu, et al.. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331(6018): 746–750
https://doi.org/10.1126/science.1200448
pmid: 21252313
|
21 |
KZhang, J H Park. Surface localization of defects in black TiO2: Enhancing photoactivity or reactivity. The Journal of Physical Chemistry Letters, 2017, 8(1): 199–207
https://doi.org/10.1021/acs.jpclett.6b02289
pmid: 27991794
|
22 |
BWang, S Shen, S SMao. Black TiO2 for solar hydrogen conversion. Journal of Materiomics, 2017, 3(2): 96–111
https://doi.org/10.1016/j.jmat.2017.02.001
|
23 |
GZhang, S Hou, HZhang, et al.. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core–shell nanorod arrays on a carbon cloth anode. Advanced Materials, 2015, 27(14): 2400–2405
https://doi.org/10.1002/adma.201405222
pmid: 25728828
|
24 |
J XFeng, H Xu, Y TDong, et al.. Efficient hydrogen evolution electrocatalysis using cobalt nanotubes decorated with titanium dioxide nanodots. Angewandte Chemie International Edition, 2017, 56(11): 2960–2964
https://doi.org/10.1002/anie.201611767
pmid: 28140498
|
25 |
YLiu, N Fu, GZhang, et al.. Design of hierarchical Ni–Co@Ni–Co layered double hydroxide core–shell structured nanotube array for high-performance flexible all-solid-state battery-type supercapacitors. Advanced Functional Materials, 2017, 27(8): 1605307
https://doi.org/10.1002/adfm.201605307
|
26 |
SMeng, Y Hong, ZDai, et al.. Simultaneous detection of dihydroxybenzene isomers with ZnO nanorod/carbon cloth electrodes. ACS Applied Materials & Interfaces, 2017, 9(14): 12453–12460
https://doi.org/10.1021/acsami.7b00546
pmid: 28337905
|
27 |
YHou, Z Wen, SCui, et al.. Strongly coupled ternary hybrid aerogels of N-deficient porous graphitic-C3N4 nanosheets/N-doped graphene/NiFe-layered double hydroxide for solar-driven photoelectrochemical water oxidation. Nano Letters, 2016, 16(4): 2268–2277
https://doi.org/10.1021/acs.nanolett.5b04496
pmid: 26963768
|
28 |
MDing, N Yao, CWang, et al.. ZnO@CdS core–shell heterostructures: Fabrication, enhanced photocatalytic, and photoelectrochemical performance. Nanoscale Research Letters, 2016, 11(1): 205 (7 pages)
https://doi.org/10.1186/s11671-016-1432-7
pmid: 27090656
|
29 |
QKang, J Cao, YZhang, et al.. Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(18): 5766–5774
https://doi.org/10.1039/c3ta10689f
|
30 |
GZhu, T Lin, XLü, et al.. Black brookite titania with high solar absorption and excellent photocatalytic performance. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(34): 9650–9653
https://doi.org/10.1039/c3ta11782k
|
31 |
JDong, J Han, YLiu, et al.. Defective black TiO2 synthesized via anodization for visible-light photocatalysis. ACS Applied Materials & Interfaces, 2014, 6(3): 1385–1388
https://doi.org/10.1021/am405549p
pmid: 24490636
|
32 |
NLiu, C Schneider, DFreitag, et al.. Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. Nano Letters, 2014, 14(6): 3309–3313
https://doi.org/10.1021/nl500710j
pmid: 24797919
|
33 |
HYin, T Lin, CYang, et al.. Gray TiO2 nanowires synthesized by aluminum-mediated reduction and their excellent photocatalytic activity for water cleaning. Chemistry, 2013, 19(40): 13313–13316
https://doi.org/10.1002/chem.201302286
pmid: 24014465
|
34 |
ZWang, C Yang, TLin, et al.. H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Advanced Functional Materials, 2013, 23(43): 5444–5450
https://doi.org/10.1002/adfm.201300486
|
35 |
HCai, P Liang, ZHu, et al.. Enhanced photoelectrochemical activity of ZnO-coated TiO2 nanotubes and its dependence on ZnO coating thickness. Nanoscale Research Letters, 2016, 11(1): 104 (11 pages)
https://doi.org/10.1186/s11671-016-1309-9
pmid: 26911568
|
36 |
SGuo, X Zhao, WZhang, et al.. Optimization of electrolyte to significantly improve photoelectrochemical water splitting performance of ZnO nanowire arrays. Materials Science and Engineering B, 2018, 227: 129–135
https://doi.org/10.1016/j.mseb.2017.09.020
|
37 |
H T TTran, HKosslick, M FIbad, et al.. Photocatalytic performance of highly active brookite in the degradation of hazardous organic compounds compared to anatase and rutile. Applied Catalysis B: Environmental, 2017, 200: 647–658
https://doi.org/10.1016/j.apcatb.2016.07.017
|
38 |
GZhou, L Shen, ZXing, et al.. Ti3+ self-doped mesoporous black TiO2/graphene assemblies for unpredicted-high solar-driven photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2017, 505: 1031–1038
https://doi.org/10.1016/j.jcis.2017.06.097
pmid: 28697542
|
39 |
CDu, J Wang, XLiu, et al.. Ultrathin CoOx-modified hematite with low onset potential for solar water oxidation. Physical Chemistry Chemical Physics, 2017, 19(21): 14178–14184
https://doi.org/10.1039/C7CP01588G
pmid: 28530305
|
40 |
ZWang, Y Han, YZeng, et al.. Activated carbon fiber paper with exceptional capacitive performance as a robust electrode for supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(16): 5828–5833
https://doi.org/10.1039/C6TA02056A
|
41 |
LCai, F Ren, MWang, et al.. V ions implanted ZnO nanorod arrays for photoelectrochemical water splitting under visible light. International Journal of Hydrogen Energy, 2015, 40(3): 1394–1401
https://doi.org/10.1016/j.ijhydene.2014.11.114
|
42 |
CLiu, P Wu, KWu, et al.. Advanced bi-functional CoPi co-catalyst-decorated g-C3N4 nanosheets coupled with ZnO nanorod arrays as integrated photoanodes. Dalton Transactions, 2018, 47(18): 6605–6614
https://doi.org/10.1039/C7DT02459B
pmid: 29700514
|
43 |
F YSu, W D Zhang. Fabrication and photoelectrochemical property of In2O3/ZnO composite nanotube arrays using ZnO nanorods as self-sacrificing templates. Materials Letters, 2018, 211: 65–68
https://doi.org/10.1016/j.matlet.2017.09.085
|
44 |
P GRamos, E Flores, L ASánchez, et al.. Enhanced photoelectrochemical performance and photocatalytic activity of ZnO/TiO2 nanostructures fabricated by an electrostatically modified electrospinning. Applied Surface Science, 2017, 426: 844–851
https://doi.org/10.1016/j.apsusc.2017.07.218
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|