Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2017, Vol. 11 Issue (3) : 241-249    https://doi.org/10.1007/s11706-017-0386-8
RESEARCH ARTICLE
Highly ordered Ag--TiO2 nanocomposited arrays with high visible-light photocatalytic activity
Cong ZHAO1, Da-chuan ZHU2, Xiao-yao CHENG1, Shi-xiu CAO1()
1. Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, China
2. College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
 Download: PDF(420 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

TiO2 is active only in the ultraviolet region. To enhance the active ability, a combined method consisting of the anodic oxidation method and the hydrothermal method was developed to prepare highly ordered Ag–TiO2 nanocomposited arrays. The anodic oxidation was used to synthesize amorphous nanotubes with high chemical activity that subsequently served as highly ordered templates in preparing the final sample. The amorphous nanotubes got converted to highly ordered Ag–TiO2 (anatase) arrays in the silver nitrate & glucose aqueous solution via hydrothermal treatment. SEM and TEM results show that the Ag–TiO2 nanocomposite was composed of a large number of Ag nanoparticles and anatase TiO2 nanoparticles, and the morphology of those at the top of the arrays was found different from that of its trunk. The morphology evolution mechanism of the obtained sample was discussed. It is also revealed that the Ag–TiO2 nanocomposite has high visible-light photocatalytic activity.

Keywords TiO2      nanoparticles      silver      heterojunction     
Corresponding Author(s): Shi-xiu CAO   
Online First Date: 27 June 2017    Issue Date: 24 August 2017
 Cite this article:   
Cong ZHAO,Da-chuan ZHU,Xiao-yao CHENG, et al. Highly ordered Ag--TiO2 nanocomposited arrays with high visible-light photocatalytic activity[J]. Front. Mater. Sci., 2017, 11(3): 241-249.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-017-0386-8
https://academic.hep.com.cn/foms/EN/Y2017/V11/I3/241
Fig.1  (a)(b) SEM images, (c) XRD pattern and (d) TEM image of the obtained Ag-TiO2 nanocomposite.
Fig.2  SEM images of (a) side arrays, (b) top arrays, (c)(d) sectional arrays, and (e)(f) a single Ag?TiO2 nanocomposite. (g) TEM image of a single Ag?TiO2 nanocomposite. (h) HRTEM image of a partial single Ag?TiO2 nanocomposite.
Fig.3  A scheme illustrating the formation of Ag–TiO2 nanocomposited arrays from amorphous TNTs upon the silver nitrate & glucose aqueous solution soaking.
Fig.4  (a) UV-vis absorbance spectra of Degussa P25 (black color curve), TNTs (blue color curve) and Ag–TiO2 nanocomposites (red color curve). (b) A photograph of Ag–TiO2 nanocomposites dispersed in aqueous solution.
Fig.5  Photocatalytic degradation of RhB under the blue light (400–500 nm) irradiation.
Fig.6  The illustration of the Ag?TiO2 nanocomposite. Insert: Schematic of energy band diagram and enhanced photocatalytic reaction in Ag?TiO2 nanocomposite by LSPR effect under the visible-light irradiation.
1 Yin H, Wada Y, Kitamura T, et al.. Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2. Journal of Materials Chemistry, 2001, 11(6): 1694–1703
https://doi.org/10.1039/b008974p
2 Lapides A M, Ashford D L, Hanson K, et al.. Stabilization of a ruthenium(II) polypyridyl dye on nanocrystalline TiO2 by an electropolymerized overlayer. Journal of the American Chemical Society, 2013, 135(41): 15450–15458
https://doi.org/10.1021/ja4055977 pmid: 24099001
3 Durupthy O, Bill J, Aldinger F. Bioinspired synthesis of crystalline TiO2: effect of amino acids on nanoparticles structure and shape. Crystal Growth & Design, 2007, 7(12): 2696–2704
https://doi.org/10.1021/cg060405g
4 Nguyen C K, Cha H G, Kang Y S. Axis-oriented, anatase TiO2 single crystals with dominant 001 and 100 facets. Crystal Growth & Design, 2011, 11(9): 3947–3953
https://doi.org/10.1021/cg200815t
5 Tong H, Ouyang S, Bi Y, et al.. Nano-photocatalytic materials: possibilities and challenges. Advanced Materials, 2012, 24(2): 229–251
https://doi.org/10.1002/adma.201102752 pmid: 21972044
6 Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira M E, et al.. Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology, 2008, 19(14): 145605
https://doi.org/10.1088/0957-4484/19/14/145605 pmid: 21817764
7 Peng Y, Huang G, Huang W. Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films. Advanced Powder Technology, 2012, 23(1): 8–12
https://doi.org/10.1016/j.apt.2010.11.006
8 Waterhouse G I N, Wahab A K, Al-Oufi M, et al.. Hydrogen production by tuning the photonic band gap with the electronic band gap of TiO2. Scientific Reports, 2013, 3: 2849 (5 pages) doi:10.1038/srep02849
9 Kisch H. Semiconductor photocatalysis — mechanistic and synthetic aspects. Angewandte Chemie International Edition, 2013, 52(3): 812–847
https://doi.org/10.1002/anie.201201200 pmid: 23212748
10 Chen X, Burda C. The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. Journal of the American Chemical Society, 2008, 130(15): 5018–5019
https://doi.org/10.1021/ja711023z pmid: 18361492
11 De Trizio L, Buonsanti R, Schimpf A M, et al.. Nb-doped colloidal TiO2 nanocrystals with tunable infrared absorption. Chemistry of Materials, 2013, 25(16): 3383–3390
https://doi.org/10.1021/cm402396c
12 Sacco O, Vaiano V, Han C, et al.. Photocatalytic removal of atrazine using N-doped TiO2 supported on phosphors. Applied Catalysis B: Environmental, 2015, 164: 462–474
https://doi.org/10.1016/j.apcatb.2014.09.062
13 Spadavecchia F, Cappelletti G, Ardizzone S, et al.. Solar photoactivity of nano-N-TiO2 from tertiary amine: role of defects and paramagnetic species. Applied Catalysis B: Environmental, 2010, 96(3‒4): 314–322
https://doi.org/10.1016/j.apcatb.2010.02.027
14 Lee W J, Lee J M, Kochuveedu S T, et al.. Biomineralized N-doped CNT/TiO2 core/shell nanowires for visible light photocatalysis. ACS Nano, 2012, 6(1): 935–943
https://doi.org/10.1021/nn204504h pmid: 22195985
15 Lee H U, Lee G, Park J C, et al.. Efficient visible-light responsive TiO2 nanoparticles incorporated magnetic carbon photocatalysts. Chemical Engineering Journal, 2014, 240: 91–98
https://doi.org/10.1016/j.cej.2013.11.054
16 Wu F, Hu X, Fan J, et al.. Photocatalytic activity of Ag/TiO2 nanotube arrays enhanced by surface plasmon resonance and application in hydrogen evolution by water splitting. Plasmonics, 2013, 8(2): 501–508
https://doi.org/10.1007/s11468-012-9418-5
17 Liang Y, Wang C, Kei C, et al.. Photocatalysis of Ag-loaded TiO2 nanotube arrays formed by atomic layer deposition. The Journal of Physical Chemistry C, 2011, 115(19): 9498–9502
https://doi.org/10.1021/jp202111p
18 Jiang Y, Zheng B, Du J, et al.. Electrophoresis deposition of Ag nanoparticles on TiO2 nanotube arrays electrode for hydrogen peroxide sensing. Talanta, 2013, 112(15): 129–135
https://doi.org/10.1016/j.talanta.2013.03.015 pmid: 23708548
19 Yang C, Balakrishnan N, Bhethanabotla V R, et al.. Interplay between subnanometer Ag and Pt clusters and anatase TiO2 (101) surface: Implications for catalysis and photocatalysis. The Journal of Physical Chemistry C, 2014, 118(9): 4702–4714
https://doi.org/10.1021/jp4112525
20 Tanaka A, Hashimoto K, Kominami H. Visible-light-induced hydrogen and oxygen formation over Pt/Au/WO3 photocatalyst utilizing two types of photoabsorption due to surface plasmon resonance and band-gap excitation. Journal of the American Chemical Society, 2014, 136(2): 586–589
https://doi.org/10.1021/ja410230u pmid: 24386964
21 Long R, Prezhdo O V. Instantaneous generation of charge-separated state on TiO2 surface sensitized with plasmonic nanoparticles. Journal of the American Chemical Society, 2014, 136(11): 4343–4354
https://doi.org/10.1021/ja5001592 pmid: 24568726
22 Huang Z A, Sun Q, Lv K, et al.. Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (001) vs (101) facets of TiO2. Applied Catalysis B: Environmental, 2015, 164: 420–427
https://doi.org/10.1016/j.apcatb.2014.09.043
23 Wu L, Li F, Xu Y, et al.. Plasmon-induced photoelectrocatalytic activity of Au nanoparticles enhanced TiO2 nanotube arrays electrodes for environmental remediation. Applied Catalysis B: Environmental, 2015, 164: 217–224
https://doi.org/10.1016/j.apcatb.2014.09.029
24 Shi L, Liang L, Ma J, et al.. Enhanced photocatalytic activity over the Ag2O–g-C3N4 composite under visible light. Catalysis Science & Technology, 2014, 4(3): 758
https://doi.org/10.1039/c3cy00871a
25 Zhou W, Liu H, Wang J, et al.. Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity. ACS Applied Materials & Interfaces, 2010, 2(8): 2385–2392
https://doi.org/10.1021/am100394x pmid: 20735112
26 Sarkar D, Ghosh C K, Mukherjee S, et al.. Three dimensional Ag2O/TiO2 type-II (p–n) nanoheterojunctions for superior photocatalytic activity. ACS Applied Materials & Interfaces, 2013, 5(2): 331–337
https://doi.org/10.1021/am302136y pmid: 23245288
27 Wang Y, Zhang Y N, Zhao G, et al.. Design of a novel Cu2O/TiO2/carbon aerogel electrode and its efficient electrosorption-assisted visible light photocatalytic degradation of 2,4,6-trichlorophenol. ACS Applied Materials & Interfaces, 2012, 4(8): 3965–3972
https://doi.org/10.1021/am300795w pmid: 22780307
28 Liao Y, Que W, Zhong P, et al.. A facile method to crystallize amorphous anodized TiO2 nanotubes at low temperature. ACS Applied Materials & Interfaces, 2011, 3(7): 2800–2804
https://doi.org/10.1021/am200685s pmid: 21675751
29 Huo K, Wang H, Zhang X, et al.. Heterostructured TiO2 nanoparticles/nanotube arrays: in situ formation from amorphous TiO2 nanotube arrays in water and enhanced photocatalytic activity. ChemPlusChem, 2012, 77(4): 323–329
https://doi.org/10.1002/cplu.201200024
30 Zhao C, Zhu D, Cao S. Amorphous TiO2 nanotube-derived synthesis of highly ordered anatase TiO2 nanorod arrays. Superlattices and Microstructures, 2016, 90: 257–264
https://doi.org/10.1016/j.spmi.2015.12.037
31 Wang D, Liu L, Zhang F, et al.. Spontaneous phase and morphology transformations of anodized titania nanotubes induced by water at room temperature. Nano Letters, 2011, 11(9): 3649–3655
https://doi.org/10.1021/nl2015262 pmid: 21786788
32 Sun X M, Li Y D. Ag@C core/shell structured nanoparticles: controlled synthesis, characterization, and assembly. Langmuir, 2005, 21(13): 6019‒6024 
https://doi.org/10.1021/la050193+
33 Spanhel L, Weller H, Henglein A. Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles. Journal of the American Chemical Society, 1987, 109(22): 6632–6635
https://doi.org/10.1021/ja00256a012
34 Wang M, Sun L, Lin Z, et al.. p–n Heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities. Energy & Environmental Science, 2013, 6(4): 1211–1220
https://doi.org/10.1039/c3ee24162a
35 Scanlon D O, Dunnill C W, Buckeridge J, et al.. Band alignment of rutile and anatase TiO2. Nature Materials, 2013, 12(9): 798–801
https://doi.org/10.1038/nmat3697 pmid: 23832124
36 Zhao C, Shu X, Zhu D C, et al.. High visible light photocatalytic property of Co2+-doped TiO2 nanoparticles with mixed phases. Superlattices and Microstructures, 2015, 88: 32–42
[1] Tanya NANDA, Ankita RATHORE, Deepika SHARMA. Biomineralized and chemically synthesized magnetic nanoparticles: A contrast[J]. Front. Mater. Sci., 2020, 14(4): 387-401.
[2] Yimin ZHOU, Qingni XU, Chaohua LI, Yuqi CHEN, Yueli ZHANG, Bo LU. Hollow mesoporous silica nanoparticles as nanocarriers employed in cancer therapy: A review[J]. Front. Mater. Sci., 2020, 14(4): 373-386.
[3] Qizhi TIAN, Yajun JI, Yiyi QIAN, Abulikemu ABULIZI. Synthesis of defect-rich hierarchical sponge-like TiO2 nanoparticles and their improved photocatalytic and photoelectrochemical performance[J]. Front. Mater. Sci., 2020, 14(3): 286-295.
[4] Yuming CHEN, Wenhao TANG, Jingru MA, Ben GE, Xiangliang WANG, Yufen WANG, Pengfei REN, Ruiping LIU. Nickel-decorated TiO2 nanotube arrays as a self-supporting cathode for lithium--sulfur batteries[J]. Front. Mater. Sci., 2020, 14(3): 266-274.
[5] Zhenxiao LU, Wenxian WANG, Jun ZHOU, Zhongchao BAI. FeS2@C nanorods embedded in three-dimensional graphene as high-performance anode for sodium-ion batteries[J]. Front. Mater. Sci., 2020, 14(3): 255-265.
[6] Zhiyu ZHANG, Lixia HU, Hui ZHANG, Liping YU, Yunxiao LIANG. Large-sized nano-TiO2/SiO2 mesoporous nanofilm-constructed macroporous photocatalysts with excellent photocatalytic performance[J]. Front. Mater. Sci., 2020, 14(2): 163-176.
[7] Xin LIU, Xiangling REN, Longfei TAN, Wenna GUO, Zhongbing HUANG, Xianwei MENG. Preparation and enhanced properties of ZrMOF@CdTe nanoparticles with high-density quantum dots[J]. Front. Mater. Sci., 2020, 14(2): 155-162.
[8] Pengfei ZHU, Zhihao REN, Ruoxu WANG, Ming DUAN, Lisi XIE, Jing XU, Yujing TIAN. Preparation and visible photocatalytic dye degradation of Mn-TiO2/sepiolite photocatalysts[J]. Front. Mater. Sci., 2020, 14(1): 33-42.
[9] Zhihong JING, Xiue LIU, Yan DU, Yuanchun HE, Tingjiang YAN, Wenliang WANG, Wenjuan LI. Synthesis, characterization, antibacterial and photocatalytic performance of Ag/AgI/TiO2 hollow sphere composites[J]. Front. Mater. Sci., 2020, 14(1): 1-13.
[10] Elias ASSAYEHEGN, Ananthakumar SOLAIAPPAN, Yonas CHEBUDIE, Esayas ALEMAYEHU. Influence of temperature on preparing mesoporous mixed phase N/TiO2 nanocomposite with enhanced solar light photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 352-366.
[11] Liuxin YANG, Zhou CHEN, Jian ZHANG, Chang-An WANG. SrTiO3/TiO2 heterostructure nanowires with enhanced electron--hole separation for efficient photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 342-351.
[12] Weiwei FAN, Jilu WANG, Jiajun FENG, Yong WANG. Facile preparation of acid/CO2 stimuli-responsive sheddable nanoparticles based on carboxymethylated chitosan[J]. Front. Mater. Sci., 2019, 13(3): 296-304.
[13] Pengcheng WU, Chang LIU, Yan LUO, Keliang WU, Jianning WU, Xuhong GUO, Juan HOU, Zhiyong LIU. A novel black TiO2/ZnO nanocone arrays heterojunction on carbon cloth for highly efficient photoelectrochemical performance[J]. Front. Mater. Sci., 2019, 13(1): 43-53.
[14] Zhongchi WANG, Gongsheng SONG, Jianle XU, Qiang FU, Chunxu PAN. Electrospun titania fibers by incorporating graphene/Ag hybrids for the improved visible-light photocatalysis[J]. Front. Mater. Sci., 2018, 12(4): 379-391.
[15] Ruirui LIU, Zhijiang JI, Jing WANG, Jinjun ZHANG. Mesocrystalline TiO2/sepiolite composites for the effective degradation of methyl orange and methylene blue[J]. Front. Mater. Sci., 2018, 12(3): 292-303.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed