Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2020, Vol. 14 Issue (1) : 1-13    https://doi.org/10.1007/s11706-020-0491-y
RESEARCH ARTICLE
Synthesis, characterization, antibacterial and photocatalytic performance of Ag/AgI/TiO2 hollow sphere composites
Zhihong JING(), Xiue LIU, Yan DU, Yuanchun HE, Tingjiang YAN, Wenliang WANG, Wenjuan LI
College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
 Download: PDF(3445 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Dispersed TiO2 hollow spheres were successfully prepared which was obtained via Ostwald ripening under solvothermal conditions without any templates or surfactants. Then, the AgI/TiO2 was synthesized by the deposition−precipitation process. Finally, Ag/AgI/TiO2 was obtained by a photocatalytic reduction way. Their characteristics were analyzed by XRD, SEM, HRTEM, N2 adsorption−desorption measurements and UV-vis absorption spectra. To demonstrate the potential applications of such composites, their antibacterial activity against Escherichia coli (E. coli) was studied by microcalorimetry for the first time, and their photocatalytic performance for degradation of different organic dyes under simulated UV and visible light was discussed. The results indicated that Ag/AgI/TiO2 hollow spheres revealed elevated antibacterial and photocatalytic activity because of their unique morphology, hollow structure and high surface area. The mechanism of the excellent antibacterial and photocatalytic activity of Ag/AgI/TiO2 hollow spheres are discussed which are attributed to the synergetic effect of Ag, AgI and TiO2. It suggested that the new Ag/AgI/TiO2 photocatalyst has broad application prospects in solar cell, sensor, antibacterial, catalysis and nanotechnology.

Keywords Ag/AgI/TiO2      hollow sphere      Ostwald ripening      microcalorimetric method      antibacterial and photocatalytic performance     
Corresponding Author(s): Zhihong JING   
Online First Date: 03 January 2020    Issue Date: 05 March 2020
 Cite this article:   
Zhihong JING,Xiue LIU,Yan DU, et al. Synthesis, characterization, antibacterial and photocatalytic performance of Ag/AgI/TiO2 hollow sphere composites[J]. Front. Mater. Sci., 2020, 14(1): 1-13.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-020-0491-y
https://academic.hep.com.cn/foms/EN/Y2020/V14/I1/1
Fig.1  XRD patterns of hollow spherical TiO2 before calcination (a), hollow spherical TiO2 after calcination (b), AgI/TiO2 (c), and Ag/AgI/TiO2 (d). The insert shows XRD patterns of Ag.
Fig.2  SEM images of (a) hollow spherical TiO2 before calcination (the insert showing the EDX spectrum of TiO2), (b) hollow spherical TiO2 after calcination, (c) AgI/TiO2, (d) Ag/AgI/TiO2, and (e) the selected individual hollow spherical Ag/AgI/TiO2. Elemental mapping images of (f) Ti, (g) O, (h) I and (i) Ag of the hollow spherical Ag/AgI/TiO2.
Fig.3  HRTEM images of the hollow spherical Ag/AgI/TiO2.
Fig.4  The growth mechanism of the anatase TiO2 hollow sphere, AgI/TiO2 and Ag/AgI/TiO2.
Fig.5  UV-vis absorption spectra of various samples.
Fig.6  N2 adsorption?desorption isotherms and corresponding BJH pore size distribution plots (inset) of (a) TiO2, (b) AgI/TiO2 and (c) Ag/AgI/TiO2.
SampleSBET/(m2·g−1)Mean pore size/nmPore volume/(cm3·g−1)
P2550??
TiO2123.5620.50.25
AgI/TiO265.1720.90.22
Ag/AgI/TiO275.9421.30.34
Tab.1  Summary of the textural properties of all samples
Fig.7  Metabolic power?time curves of the exponential stage of E. coli of (a) TiO2, (b) AgI/TiO2 and (c) Ag/AgI/TiO2 at different concentrations: 0 mg·mL−1 (i); 0.0050 mg·mL−1 (ii); 0.0100 mg·mL−1 (iii); 0.0150 mg·mL−1 (iv); 0.0200 mg·mL−1 (v); 0.0250 mg·mL−1 (vi); 0.0300 mg·mL−1 (vii); 0.0350 mg·mL−1 (viii).
Samplem/min−1
c = 0 mg·mL−1c = 0.0050 mg·mL−1c = 0.0100 mg·mL−1c = 0.0150 mg·mL−1c = 0.0200 mg·mL−1c = 0.0250 mg·mL−1c = 0.0300 mg·mL−1c = 0.0350 mg·mL−1
TiO20.050310.018980.016890.015550.014330.012700.012340.00904
AgI/TiO20.074970.027040.022480.017090.014810.012460.008950.00766
Ag/AgI/TiO20.075450.041400.021330.018390.013880.009910.008740.00794
Tab.2  MIC of E. coli and values of m at different concentrations and fitting equations (m?c) for three samples
Fig.8  Predicted growth inhibition mechanism of strain E. coli.
Fig.9  Photocatalytic activity of RhB degradation for three samples: (a) under irradiated visible light and (b) under irradiated UV light with the inserts showing Ag/AgI/TiO2 photocatalytic degradation images (a, sample every 10 min; b, sample every 40 min). The first order kinetic plots: (c) under irradiated visible light and (d) under irradiated UV light.
CatalystPhotocatalytic degradation/%Kinetic rate constant, k/min−1
Visible lightUV lightVisible lightUV light
TiO281.4146.060.01300.00310
AgI/TiO289.3670.380.01340.00691
Ag/AgI/TiO298.2288.680.05360.0138
Tab.3  Photocatalytic degradation activity and kinetic rate constant k of all samples for RhB under visible light and UV irradiation
Fig.10  The schematic diagram of the photocatalytic reaction mechanism.
Fig.11  Cyclic experiments on photocatalytic degradation of RhB by Ag/AgI/TiO2 under visible light irradiation.
  Fig. S1 The metabolic power?time curves of the exponential stage of E. Coli of P25 TiO2 at different concentrations: 0 (i); 0.0050 mg·mL−1 (ii); 0.0100 mg·mL-1 (iii); 0.0150 mg·mL−1 (iv); 0.0200 mg·mL−1 (v); 0.0250 mg·mL−1 (vi); 0.0300 mg·mL−1 (vii); 0.0305 mg·mL−1 (viii).
  Fig. S2 The photodegradation activities of different dyes under visible light and UV irradiation.
  Fig. S3 The photodegradation activity for RhB in the presence of Ag/AgI/TiO2 (no scavenger) and the scavenger BQ, TBA and AO under visible light irradiation: (a) photocatalytic degradation activity; (b) kinetic rate constant k.
  Fig. S4 HRTEM images of (a) TiO2 and (b) AgI/TiO2?hollow spheres.
DyePhotocatalytic degradation/%Kinetic rate constant, k/min−1
Visible lightUV lightVisible lightUV light
MB42.1116.340.00290.00113
CR88.6867.170.01370.00591
RhB98.2288.680.05090.0138
  Table S1 Photocatalytic degradation activity and kinetic rate constant k of Ag/AgI/TiO2 for various dyes under visible light and UV irradiation
1 S Zhao, J Chen, Y Liu, et al.. Silver nanoparticles confined in shell-in-shell hollow TiO2 manifesting efficiently photocatalytic activity and stability. Chemical Engineering Journal, 2019, 367: 249–259
https://doi.org/10.1016/j.cej.2019.02.123
2 S Pal, A M Laera, A Licciulli, et al.. Biphase TiO2 microspheres with enhanced photocatalytic activity. Industrial & Engineering Chemistry Research, 2014, 53(19): 7931–7938
https://doi.org/10.1021/ie404123f
3 M R Hoffmann, S T Martin, W Choi, et al.. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95(1): 69–96
https://doi.org/10.1021/cr00033a004
4 J Zhang, Q Xu, Z Feng, et al.. Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angewandte Chemie International Edition, 2008, 47(9): 1766–1769
https://doi.org/10.1002/anie.200704788 pmid: 18213667
5 Y Zhang, J Chen, H Tang, et al.. Hierarchically-structured SiO2‒Ag@TiO2 hollow spheres with excellent photocatalytic activity and recyclability. Journal of Hazardous Materials, 2018, 354: 17–26
https://doi.org/10.1016/j.jhazmat.2018.04.047 pmid: 29723759
6 K Shankar, J I Basham, N K Allam, et al.. Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. The Journal of Physical Chemistry C, 2009, 113(16): 6327–6359
https://doi.org/10.1021/jp809385x
7 S Liu, J Yu, M Jaroniec. Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets. Journal of the American Chemical Society, 2010, 132(34): 11914–11916
https://doi.org/10.1021/ja105283s pmid: 20687566
8 W Q Fang, J Z Zhou, J Liu, et al.. Hierarchical structures of single-crystalline anatase TiO2 nanosheets dominated by {001} facets. Chemistry: A European Journal, 2011, 17(5): 1423–1427
https://doi.org/10.1002/chem.201002582 pmid: 21268142
9 H G Yang, C H Sun, S Z Qiao, et al.. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008, 453(7195): 638–641
https://doi.org/10.1038/nature06964 pmid: 18509440
10 S Sakthivel, H Kisch. Daylight photocatalysis by carbon-modified titanium dioxide. Angewandte Chemie International Edition, 2003, 42(40): 4908–4911
https://doi.org/10.1002/anie.200351577 pmid: 14579435
11 W Zhao, W Ma, C Chen, et al.. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2−xBx under visible irradiation. Journal of the American Chemical Society, 2004, 126(15): 4782–4783
https://doi.org/10.1021/ja0396753 pmid: 15080674
12 I M Arabatzis, T Stergiopoulos, M C Bernard, et al.. Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange. Applied Catalysis B: Environmental, 2003, 42(2): 187–201
https://doi.org/10.1016/S0926-3373(02)00233-3
13 H Zhang, G Wang, D Chen, et al.. Tuning photoelectrochemical performances of Ag‒TiO2 nanocomposites via reduction/oxidation of Ag. Chemistry of Materials, 2008, 20(20): 6543–6549
https://doi.org/10.1021/cm801796q
14 Z Jing, C Wang, G Wang, et al.. Preparation and antibacterial activities of undoped and palladium doped titania nanoparticles. Journal of Sol-Gel Science and Technology, 2010, 56(2): 121–127
https://doi.org/10.1007/s10971-010-2284-8
15 A Bokare, A Sanap, M Pai, et al.. Antibacterial activities of Nd doped and Ag coated TiO2 nanoparticles under solar light irradiation. Colloid and Surface B: Biointerfaces, 2013, 102: 273–280
https://doi.org/10.1016/j.colsurfb.2012.08.030 pmid: 23010118
16 C Hu, Y Lan, J Qu, et al.. Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. The Journal of Physical Chemistry B, 2006, 110(9): 4066–4072
https://doi.org/10.1021/jp0564400 pmid: 16509698
17 Q Liu, J Ding, F K Mante, et al.. The role of surface functional groups in calcium phosphate nucleation on titanium foil: a self-assembled monolayer technique. Biomaterials, 2002, 23(15): 3103–3111
https://doi.org/10.1016/S0142-9612(02)00050-9 pmid: 12102181
18 Y H Yeom, M Li, W M H Sachtler, et al.. Low-temperature NOx reduction with ethanol over Ag/Y: A comparison with Ag/γ-Al2O3 and BaNa/Y. Journal of Catalysis, 2007, 246(2): 413–427
https://doi.org/10.1016/j.jcat.2006.12.013
19 S Zhao, Y Ma, Z Qu, et al.. The performance of Ag doped V2O5‒TiO2 catalyst on the catalytic oxidation of gaseous elemental mercury. Catalysis Science & Technology, 2014, 4(11): 4036–4044
https://doi.org/10.1039/C4CY00410H
20 H Xu, J Yan, Y Xu, et al.. Novel visible-light-driven AgX/graphite-like C3N4 (X= Br, I) hybrid materials with synergistic photocatalytic activity. Applied Catalysis B: Environmental, 2013, 129: 182–193
https://doi.org/10.1016/j.apcatb.2012.08.015
21 B Tian, R Dong, J Zhang, et al.. Sandwich-structured AgCl@Ag@TiO2 with excellent visible-light photocatalytic activity for organic pollutant degradation and E. coli K12 inactivation. Applied Catalysis B: Environmental, 2014, 158‒159: 76–84
https://doi.org/10.1016/j.apcatb.2014.04.008
22 J Yu, G Dai, B Huang. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays. The Journal of Physical Chemistry C, 2009, 113(37): 16394–16401
https://doi.org/10.1021/jp905247j
23 S Zhao, Z Qu, N Yan, et al.. Ag-modified AgI‒TiO2 as an excellent and durable catalyst for catalytic oxidation of elemental mercury. RSC Advances, 2015, 5(39): 30841–30850
https://doi.org/10.1039/C5RA00838G
24 Z Jing, L Tan, F Li, et al.. Photocatalytic and antibacterial activities of CdS nanoparticles prepared by solvothermal method. Indian Journal of Chemistry Section A: Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, 2013, 52(1): 57–62
25 Y Feng, N Feng, G Zhang, et al.. One-pot hydrothermal synthesis of ZnS-reduced grapheme oxide composites with enhanced photocatalytic properties. CrystEngComm, 2014, 16(2): 214–222
https://doi.org/10.1039/C3CE41423J
26 S Khanchandani, S Kundu, A Patra, et al.. Band gap tuning of ZnO/In2S3 core/shell nanorod arrays for enhanced visible-light-driven photocatalysis. The Journal of Physical Chemistry C, 2013, 117(11): 5558–5567
https://doi.org/10.1021/jp310495j
27 R F Ali, B D Gates. Synthesis of lithium niobate nanocrystals with size focusingthrough an Ostwald ripening process. Chemistry of Materials, 2018, 30(6): 2028–2035
https://doi.org/10.1021/acs.chemmater.7b05282
28 J Yu, J Zhang. A simple template-free approach to TiO2 hollow spheres with enhanced photocatalytic activity. Dalton Transactions, 2010, 39(25): 5860–5867
https://doi.org/10.1039/c0dt00053a pmid: 20505884
29 C Hu, T Peng, X, Huet al.. Plasmon-induced photodegradation of toxic pollutants with Ag‒AgI/Al2O3 under visible-light irradiation. Journal of the American Chemical Society, 2010, 132(2): 857–862 doi:10.1021/ja907792d
30 X E Liu, C Sun, Y D Yue, et al.. Synthesis and characterization of three-dimensional sea urchin-like AgBr/TiO2 microspheres with enhanced antibacterial and visible-light photocatalytic performance. Chemical Papers, 2019, 73(8): 1971–1978 doi:10.1007/s11696-019-00749-2
[1] Dong ZHANG, Jingxin CHEN, Chunyu DU, Bingjun ZHU, Qingru WANG, Qiang SHI, Shouxin CUI, Wenjun WANG. Enhancement of red emission assigned to inversion defects in ZnAl2O4:Cr3+ hollow spheres[J]. Front. Mater. Sci., 2020, 14(1): 73-80.
[2] Ruiping LIU,Feng REN,Jinlin YANG,Weiming SU,Zhiming SUN,Lei ZHANG,Chang-an WANG. One-step synthesis of hierarchically porous hybrid TiO2 hollow spheres with high photocatalytic activity[J]. Front. Mater. Sci., 2016, 10(1): 15-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed