Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2019, Vol. 13 Issue (2) : 156-164    https://doi.org/10.1007/s11706-019-0458-z
RESEARCH ARTICLE
Synthesis of nitrogen-doped carbon spheres using the modified Stöber method for supercapacitors
Meng LIU1, Lei LIU1, Yifeng YU1, Haijun LV1, Aibing CHEN1(), Senlin HOU2()
1. College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
2. The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
 Download: PDF(1146 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nitrogen-doped carbon spheres (NCSs) with uniform and regular morphology were facilely prepared by the modified Stöber method. Hexamethylenetetramine (HMT) was selected as the starting material, which decomposed to provide nitrogen and carbon sources for the synthesis of NCSs. The decomposition product formaldehyde polymerized to form carbon skeleton with resorcinol after carbonization, and the in-situ nitrogen doping was achieved with the decomposed nitrogen source. NCSs were obtained with regular spherical morphology, high specific surface area, and suitable nitrogen doping. When used as the electrode material, NCSs exhibited good capacitance and electrochemical stability, indicating that NCSs be the promising candidate for the electrode material of high-performance supercapacitors.

Keywords carbon spheres      nitrogen doping      supercapacitor     
Corresponding Author(s): Aibing CHEN,Senlin HOU   
Online First Date: 18 April 2019    Issue Date: 19 June 2019
 Cite this article:   
Meng LIU,Lei LIU,Yifeng YU, et al. Synthesis of nitrogen-doped carbon spheres using the modified Stöber method for supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 156-164.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-019-0458-z
https://academic.hep.com.cn/foms/EN/Y2019/V13/I2/156
Fig.1  Schematic illustrating the detailed formation of NCSs.
Fig.2  TEM images of NCSs with (a) lower magnification and (b) higher magnification.
Fig.3  (a) The N2 adsorption?desorption isotherm of NCSs, (b) the corresponding pore-size distribution curves, and (c) the wide-angle XRD pattern of NCSs.
Fig.4  (a) The wide XPS survey spectrum and (b) C 1s, (c) O 1s, (d) N 1s spectra of NCSs.
Fig.5  Electrochemical measurements of NCSs: (a) CV curves under different scan rates; (b) GCD curves at different current densities; (c) the dependency of the specific capacitance of the NCS electrode with the current density; (d) the Nyquist plot measured in the frequency range of 105?10−2 Hz; (e) the cycle life at 5 A·g−1; (f) the 1st and the 10000th charge?discharge curves.
Electrode material Cs/(F·g−1) Electrolyte Ref.
Nitrogen-doped carbon spheres 201 a) 6 mol?L−1 KOH this work
Nitrogen-doped hollow mesoporous carbon spheres 159 b) 6 mol?L−1 KOH [17]
Nitrogen-doped macro-/mesoporous carbon foams 198 b) 6 mol?L−1 KOH [39]
Nitrogen, oxygen and phosphorus decorated porous carbon 206 c) 6 mol?L−1 KOH [40]
Mesoporous activated carbon spheres 204 a) 2 mol?L−1 KOH [41]
KOH active carbon spheres 182 a) 6 mol?L−1 KOH [42]
Tab.1  Comparison of specific capacitances of different carbon materials [17,39?42]
Fig.6  Electrochemical measurements of NCSsbased on the two-electrode system: (a) CV curves at different scan rates; (b) GCD curves at different current densities; (c) the dependency of the specific capacitance of the NCS electrode with the current density; (d) the Ragone plot.
1 H Li, B Wang, X He, et al.. Composite of hierarchical interpenetrating 3D hollow carbon skeleton from lotus pollen and hexagonal MnO2 nanosheets for high performance supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(18): 9754–9762
https://doi.org/10.1039/C5TA01890K
2 A J Amali, J K Sun, Q Xu. From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage. Chemical Communications, 2014, 50(13): 1519–1522
https://doi.org/10.1039/C3CC48112C pmid: 24317277
3 D Sheberla, J C Bachman, J S Elias, et al.. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nature Materials, 2017, 16(2): 220–224
https://doi.org/10.1038/nmat4766 pmid: 27723738
4 A Balducci, R Dugas, P L Taberna, et al.. High temperature carbon‒carbon supercapacitor using ionic liquid as electrolyte. Journal of Power Sources, 2007, 165(2): 922–927
https://doi.org/10.1016/j.jpowsour.2006.12.048
5 B E Conway. Electrochemical Supercapacitors: Scientific Fundamentals And Technological Applications. New York: Plenum Publishers, 1999
6 T Cai, W Xing, Z Liu, et al.. Superhigh-rate capacitive performance of heteroatoms-doped double shell hollow carbon spheres. Carbon, 2015, 86: 235–244
https://doi.org/10.1016/j.carbon.2015.01.032
7 C Liu, J Wang, J Li, et al.. Controllable synthesis of functional hollow carbon nanostructures with dopamine as precursor for supercapacitors. ACS Applied Materials & Interfaces, 2015, 7(33): 18609–18617
https://doi.org/10.1021/acsami.5b05035 pmid: 26243663
8 D Long, F Lu, R Zhang, et al.. Suspension assisted synthesis of triblock copolymer-templated ordered mesoporous carbon spheres with controlled particle size. Chemical Communications, 2008, (23): 2647–2649
https://doi.org/10.1039/b804957b pmid: 18535695
9 J Choma, D Jamiola, K Augustynek, et al.. New opportunities in Stöber synthesis: Preparation of microporous and mesoporous carbon spheres. Journal of Materials Chemistry, 2012, 22(25): 12636–12642
https://doi.org/10.1039/c2jm31678a
10 S Li, L Qi, L Lu, et al.. Carbon spheres-assisted strategy to prepare mesoporous manganese dioxide for supercapacitor applications. Journal of Solid State Chemistry, 2013, 197: 29–37
https://doi.org/10.1016/j.jssc.2012.07.017
11 X Zhang, Y Li, C Cao. Facile one-pot synthesis of mesoporous hierarchically structured silica/carbon nanomaterials. Journal of Materials Chemistry, 2012, 22(28): 13918–13921
https://doi.org/10.1039/c2jm32723f
12 X Chen, K Kierzek, Z Jiang, et al.. Synthesis, growth mechanism, and electrochemical properties of hollow mesoporous carbon spheres with controlled diameter. The Journal of Physical Chemistry C, 2011, 115(36): 17717–17724
https://doi.org/10.1021/jp205257u
13 T Yang, J Liu, R Zhou, et al.. N-doped mesoporous carbon spheres as the oxygen reduction reaction catalysts. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(42): 18139–18146
https://doi.org/10.1039/C4TA04301D
14 R Xing, N Liu, Y Liu, et al.. Novel solid acid catalysts: sulfonic acid group-functionalized mesostructured polymers. Advanced Functional Materials, 2007, 17(14): 2455–2461
https://doi.org/10.1002/adfm.200600784
15 I Muylaert, A Verberckmoes, J De Decker, et al.. Ordered mesoporous phenolic resins: highly versatile and ultra stable support materials. Advances in Colloid and Interface Science, 2012, 175: 39–51
https://doi.org/10.1016/j.cis.2012.03.007 pmid: 22525791
16 J Liu, S Z Qiao, H Liu, et al.. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angewandte Chemie International Edition, 2011, 50(26): 5947–5951
https://doi.org/10.1002/anie.201102011 pmid: 21630403
17 A Chen, Y Li, L Liu, et al.. Controllable synthesis of nitrogen-doped hollow mesoporous carbon spheres using ionic liquids as template for supercapacitors. Applied Surface Science, 2017, 393: 151–158
https://doi.org/10.1016/j.apsusc.2016.10.025
18 L F Chen, X D Zhang, H W Liang, et al.. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano, 2012, 6(8): 7092–7102
https://doi.org/10.1021/nn302147s pmid: 22769051
19 W H Lee, J H Moon. Monodispersed N-doped carbon nanospheres for supercapacitor application. ACS Applied Materials & Interfaces, 2014, 6(16): 13968–13976
https://doi.org/10.1021/am5033378 pmid: 25078457
20 Q Shi, R Zhang, Y Lv, et al.. Nitrogen-doped ordered mesoporous carbons based on cyanamide as the dopant for supercapacitor. Carbon, 2015, 84: 335–346
https://doi.org/10.1016/j.carbon.2014.12.013
21 S Feng, W Li, Q Shi, et al.. Synthesis of nitrogen-doped hollow carbon nanospheres for CO2 capture. Chemical Communications, 2014, 50(3): 329–331
https://doi.org/10.1039/C3CC46492J pmid: 24231764
22 X Y Chen, C Chen, Z J Zhang, et al.. Nitrogen-doped porous carbon spheres derived from polyacrylamide. Industrial & Engineering Chemistry Research, 2013, 52(34): 12025–12031
https://doi.org/10.1021/ie4017013
23 D Hulicova-Jurcakova, M Seredych, G Q Lu, et al.. Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Advanced Functional Materials, 2009, 19(3): 438–447
https://doi.org/10.1002/adfm.200801236
24 H M Jeong, J W Lee, W H Shin, et al.. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Letters, 2011, 11(6): 2472–2477
https://doi.org/10.1021/nl2009058 pmid: 21595452
25 H Guo, Q Gao. Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor. Journal of Power Sources, 2009, 186(2): 551–556
https://doi.org/10.1016/j.jpowsour.2008.10.024
26 Y H Lee, Y F Lee, K H Chang, et al.. Synthesis of N-doped carbon nanosheets from collagen for electrochemical energy storage/conversion systems. Electrochemistry Communications, 2011, 13(1): 50–53
https://doi.org/10.1016/j.elecom.2010.11.010
27 J Wang, H Liu, J Diao, et al.. Size-controlled nitrogen-containing mesoporous carbon nanospheres by one-step aqueous self-assembly strategy. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(5): 2305–2313
https://doi.org/10.1039/C4TA05820H
28 Q Yu, D Guan, Z Zhuang, et al.. Mass production of monodisperse carbon microspheres with size-dependant supercapacitor performance via aqueous selfcatalyzed polymerization. ChemPlusChem, 2017, 82(6): 872–878
https://doi.org/10.1002/cplu.201700182
29 P Cheng, T Li, H Yu, et al.. Biomass-derived carbon fiber aerogel as binder free electrode for high-rate supercapacitor. The Journal of Physical Chemistry C, 2016, 120(4): 2079–2086
https://doi.org/10.1021/acs.jpcc.5b11280
30 Q Zhang, L Li, Y Wang, et al.. Uniform fibrous-structured hollow mesoporous carbon spheres for high-performance supercapacitor electrodes. Electrochimica Acta, 2015, 176: 542–547
https://doi.org/10.1016/j.electacta.2015.06.154
31 J Yu, M Guo, F Muhammad, et al.. One-pot synthesis of highly ordered nitrogen-containing mesoporous carbon with resorcinol-urea-formaldehyde resin for CO2 capture. Carbon, 2014, 69(2): 502–514
https://doi.org/10.1016/j.carbon.2013.12.058
32 A Chen, Y Wang, Q Li, et al.. Synthesis of nitrogen-doped micro-mesoporous carbon for supercapacitors. Journal of the Electrochemical Society, 2016, 163(9): A1959–A1964
https://doi.org/10.1149/2.0711609jes
33 N Liu, L Yin, C Wang, et al.. Adjusting the texture and nitrogen content of ordered mesoporous nitrogen-doped carbon materials prepared using SBA-15 silica as a template. Carbon, 2010, 48(12): 3579–3591
https://doi.org/10.1016/j.carbon.2010.06.001
34 S Feng, W Li, J Wang, et al.. Hydrothermal synthesis of ordered mesoporous carbons from a biomass-derived precursor for electrochemical capacitors. Nanoscale, 2014, 6(24): 14657–14661
https://doi.org/10.1039/C4NR05629A pmid: 25374331
35 Z Song, L Li, D Zhu, et al.. Synergistic design of N, O codoped honeycomb carbon electrode and ionogel electrolyte enabling all-solid-state supercapacitor with an ultrahigh energy density. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(2): 816–826
https://doi.org/10.1039/C8TA10406A
36 Z Song, D Zhu, L Li, et al.. An ultrahigh energy density of N, O codoped carbon nanospheres based all-solid-state symmetric supercapacitor. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(3): 1177–1186
https://doi.org/10.1039/C8TA10158B
37 Z Wang, L Sun, F Xu, et al.. Synthesis of N-doped hierarchical carbon spheres for CO2 capture and supercapacitors. RSC Advances, 2016, 6(2): 1422–1427
https://doi.org/10.1039/C5RA20484D
38 J A Carrasco, J Romero, G Abellán, et al.. Small-pore driven high capacitance in a hierarchical carbon via carbonization of Ni-MOF-74 at low temperatures. Chemical Communications, 2016, 52(58): 9141–9144
https://doi.org/10.1039/C6CC02252A pmid: 27128345
39 W Xiong, M Liu, L Gan, et al.. Preparation of nitrogen-doped macro-/mesoporous carbon foams as electrode material for supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 411(19): 34–39
https://doi.org/10.1016/j.colsurfa.2012.06.042
40 J Qu, C Geng, S Lv, et al.. Nitrogen, oxygen and phosphorus decorated porous carbons derived from shrimp shells for supercapacitors. Electrochimica Acta, 2015, 176: 982–988
https://doi.org/10.1016/j.electacta.2015.07.094
41 L Wang, B Chang, D Guan, et al.. Mesoporous activated carbon spheres derived from resorcinol-formaldehyde resin with high performance for supercapacitors. Journal of Solid State Electrochemistry, 2015, 19(6): 1783–1791
https://doi.org/10.1007/s10008-015-2789-8
42 E Yang, Y Feng, D Xiao, et al.. Fabrication of microporous and mesoporous carbon spheres for high-performance supercapacitor electrode materials. International Journal of Energy Research, 2015, 39(6): 805–811
https://doi.org/10.1002/er.3301
43 L Lv, Z S Wu, L Chen, et al.. Precursor-controlled and template-free synthesis of nitrogen-doped carbon nanoparticles for supercapacitors. RSC Advances, 2015, 5(62): 50063–50069
https://doi.org/10.1039/C5RA06697B
[1] Dandan HAN, Jinhe WEI, Shanshan WANG, Yifan PAN, Junli XUE, Yen WEI. Feather-like NiCo2O4 self-assemble from porous nanowires as binder-free electrodes for low charge transfer resistance[J]. Front. Mater. Sci., 2020, 14(4): 450-458.
[2] Meenaketan SETHI, U. Sandhya SHENOY, Selvakumar MUTHU, D. Krishna BHAT. Facile solvothermal synthesis of NiFe2O4 nanoparticles for high-performance supercapacitor applications[J]. Front. Mater. Sci., 2020, 14(2): 120-132.
[3] Danhua ZHU, Qianjie ZHOU, Aiqin LIANG, Weiqiang ZHOU, Yanan CHANG, Danqin LI, Jing WU, Guo YE, Jingkun XU, Yong REN. Two-step preparation of carbon nanotubes/RuO2/polyindole ternary nanocomposites and their application as high-performance supercapacitors[J]. Front. Mater. Sci., 2020, 14(2): 109-119.
[4] Elias ASSAYEHEGN, Ananthakumar SOLAIAPPAN, Yonas CHEBUDIE, Esayas ALEMAYEHU. Influence of temperature on preparing mesoporous mixed phase N/TiO2 nanocomposite with enhanced solar light photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 352-366.
[5] Chengzhi LUO, Guanghui LIU, Min ZHANG. Electric-field-induced microstructure modulation of carbon nanotubes for high-performance supercapacitors[J]. Front. Mater. Sci., 2019, 13(3): 270-276.
[6] Bin CAI, Changxiang SHAO, Liangti QU, Yuning MENG, Lin JIN. Preparation of sulfur-doped graphene fibers and their application in flexible fibriform micro-supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 145-155.
[7] Haiyan LI, Yucheng ZHAO, Chang-An WANG. MoS2/CoS2 composites composed of CoS2 octahedrons and MoS2 nano-flowers for supercapacitor electrode materials[J]. Front. Mater. Sci., 2018, 12(4): 354-360.
[8] Wang YANG, Wu YANG, Lina KONG, Shuanlong DI, Xiujuan QIN. Nitrogen--oxygen co-doped corrugation-like porous carbon for high performance supercapacitor[J]. Front. Mater. Sci., 2018, 12(3): 283-291.
[9] Ke ZHAN, Tong YIN, Yuan XUE, Yinwen TAN, Yihao ZHOU, Ya YAN, Bin ZHAO. A two-step approach to synthesis of Co(OH)2/γ-NiOOH/reduced graphene oxide nanocomposite for high performance supercapacitors[J]. Front. Mater. Sci., 2018, 12(3): 273-282.
[10] Jiangli XUE, Maosong MO, Zhuming LIU, Dapeng YE, Zhihua CHENG, Tong XU, Liangti QU. A general synthesis strategy for the multifunctional 3D polypyrrole foam of thin 2D nanosheets[J]. Front. Mater. Sci., 2018, 12(2): 105-117.
[11] Jagpreet SINGH, Aditi RATHI, Mohit RAWAT, Manoj GUPTA. Graphene: from synthesis to engineering to biosensor applications[J]. Front. Mater. Sci., 2018, 12(1): 1-20.
[12] Ramanathan SARASWATHY. Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1--xRuxO2 by the microemulsion method[J]. Front. Mater. Sci., 2017, 11(4): 385-394.
[13] Xiangcang REN,Chuanjin TIAN,Sa LI,Yucheng ZHAO,Chang-An WANG. Facile synthesis of tremella-like MnO2 and its application as supercapacitor electrodes[J]. Front. Mater. Sci., 2015, 9(3): 234-240.
[14] Yan HAN,Ping-Ping ZHAO,Xiao-Ting DONG,Cui ZHANG,Shuang-Xi LIU. Improvement in electrochemical capacitance of activated carbon from scrap tires by nitric acid treatment[J]. Front. Mater. Sci., 2014, 8(4): 391-398.
[15] Jing SUN, Ling-Hao HE, Qiao-Ling ZHAO, Li-Fang CAI, Rui SONG, Yong-Mei HAO, Zhi MA, Wei HUANG. A simple and controllable nanostructure comprising non-conductive poly(vinylidene fluoride) and graphene nanosheets for supercapacitor[J]. Front Mater Sci, 2012, 6(2): 149-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed