|
|
Two-step preparation of carbon nanotubes/RuO2/polyindole ternary nanocomposites and their application as high-performance supercapacitors |
Danhua ZHU1, Qianjie ZHOU1, Aiqin LIANG1, Weiqiang ZHOU1( ), Yanan CHANG1, Danqin LI1, Jing WU1, Guo YE1, Jingkun XU1( ), Yong REN2 |
1. Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China 2. Department of Mathematical Sciences, Zibo Normal College, Zibo 255130, China |
|
|
Abstract A ternary single-walled carbon nanotubes/RuO2/polyindole (SWCNT/RuO2/PIn) nanocomposite was fabricated by the oxidation polymerization of indole on the prefabricated SWCNT/RuO2 binary nanocomposites. The nanocomposite was measured by FTIR, XRD, SEM, TEM, EDS and XPS, together with the electrochemical technique. The electrochemical results demonstrated that the symmetric supercapacitor used SWCNT/RuO2/PIn as electrodes presented 95% retention rate after 10000 cycles, superior capacitive performance of 1203 F·g−1 at 1 A·g−1, and high energy density of 33 W·h·kg−1 at 5000 W·kg−1. The high capacitance performance of SWCNT/RuO2/PIn nanocomposite was mainly ascribed to the beneficial cooperation effect among components. This indicated that the SWCNT/RuO2/PIn nanocomposite would be a good candidate for high-performance supercapacitors.
|
Keywords
SWCNT/RuO2/PIn
nanocomposite
supercapacitor
|
Corresponding Author(s):
Weiqiang ZHOU,Jingkun XU
|
Online First Date: 06 May 2020
Issue Date: 27 May 2020
|
|
1 |
L L Zhang, X S Zhao. Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 2009, 38(9): 2520–2531
https://doi.org/10.1039/b813846j
pmid: 19690733
|
2 |
P Simon, Y Gogotsi. Materials for electrochemical capacitors. Nature Materials, 2008, 7(11): 845–854
https://doi.org/10.1038/nmat2297
pmid: 18956000
|
3 |
Sellam, S A Hashmi. High rate performance of flexible pseudocapacitors fabricated using ionic-liquid-based proton conducting polymer electrolyte with poly(3, 4-ethylenedioxythiophene):poly(styrene sulfonate) and its hydrous ruthenium oxide composite electrodes. ACS Applied Materials & Interfaces, 2013, 5(9): 3875–3883
https://doi.org/10.1021/am4005557
pmid: 23548059
|
4 |
A Q Liang, D Q Li, W Q Zhou, et al.. Robust flexible WS2/PEDOT:PSS film for use in high-performance miniature supercapacitors. Journal of Electroanalytical Chemistry, 2018, 824: 136–146
https://doi.org/10.1016/j.jelechem.2018.07.040
|
5 |
L Zhang, H Gu, H Sun, et al.. Molecular level one-step activation of agar to activated carbon for high performance supercapacitors. Carbon, 2018, 132: 573–579
https://doi.org/10.1016/j.carbon.2018.02.100
|
6 |
Y Kumar, G P Pandey, S A Hashmi. Gel polymer electrolyte based electrical double layer capacitors: comparative study with multiwalled carbon nanotubes and activated carbon electrodes. The Journal of Physical Chemistry C, 2012, 116(50): 26118–26127
https://doi.org/10.1021/jp305128z
|
7 |
V Barranco, M A Lillo-Rodenas, A Linares-Solano, et al.. Amorphous carbon nanofibers and their activated carbon nanofibers as supercapacitor electrodes. The Journal of Physical Chemistry C, 2010, 114(22): 10302–10307
https://doi.org/10.1021/jp1021278
|
8 |
M D Stoller, S Park, Y Zhu, et al.. Graphene-based ultracapacitors. Nano Letters, 2008, 8(10): 3498–3502
https://doi.org/10.1021/nl802558y
pmid: 18788793
|
9 |
S Biswas, L T Drzal. Multilayered nano-architecture of variable sized graphene nanosheets for enhanced supercapacitor electrode performance. ACS Applied Materials & Interfaces, 2010, 2(8): 2293–2300
https://doi.org/10.1021/am100343a
pmid: 20735100
|
10 |
W Q Zhou, X M Ma, F X Jiang, et al.. Electrochemical fabrication of a porous network MnO2/poly(5-cyanoindole) composite and its capacitance performance. Electrochimica Acta, 2014, 138: 270–277
https://doi.org/10.1016/j.electacta.2014.06.123
|
11 |
G Wang, L Zhang, J Zhang. A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2012, 41(2): 797–828
https://doi.org/10.1039/C1CS15060J
pmid: 21779609
|
12 |
Y Hou, Y Cheng, T Hobson, et al.. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Letters, 2010, 10(7): 2727–2733
https://doi.org/10.1021/nl101723g
pmid: 20586479
|
13 |
P Lv, Y Y Feng, Y Li, et al.. Carbon fabric-aligned carbon nanotube/MnO2/conducting polymers ternary composite electrodes with high utilization and mass loading of MnO2 for super-capacitors. Journal of Power Sources, 2012, 220: 160–168
https://doi.org/10.1016/j.jpowsour.2012.07.073
|
14 |
J G Wang, Y Yang, Z H Huang, et al.. Rational synthesis of MnO2/conducting polypyrrole@carbon nanofiber triaxial nano-cables for high-performance supercapacitors. Journal of Materials Chemistry, 2012, 22(33): 16943–16949
https://doi.org/10.1039/c2jm33364c
|
15 |
P Li, Y Yang, E Shi, et al.. Core–double-shell, carbon nanotube@polypyrrole@MnO2 sponge as freestanding, compressible supercapacitor electrode. ACS Applied Materials & Interfaces, 2014, 6(7): 5228–5234
https://doi.org/10.1021/am500579c
pmid: 24621200
|
16 |
Q Li, J Liu, J Zou, et al.. Synthesis and electrochemical performance of multi-walled carbon nanotube/polyaniline/MnO2 ternary coaxial nanostructures for supercapacitors. Journal of Power Sources, 2011, 196(1): 565–572
https://doi.org/10.1016/j.jpowsour.2010.06.073
|
17 |
W Q Zhou, J K Xu. Progress in conjugated polyindoles: synthesis, polymerization mechanisms, properties, and applications. Polymer Reviews, 2017, 57(2): 248–275
https://doi.org/10.1080/15583724.2016.1223130
|
18 |
Q J Zhou, D H Zhu, X M Ma, et al.. High-performance capacitive behavior of layered reduced graphene oxide and polyindole nanocomposite materials. RSC Advances, 2016, 6(35): 29840–29847
https://doi.org/10.1039/C5RA27375G
|
19 |
F Zhang, C Yuan, J Zhu, et al.. Flexible films derived from electrospun carbon nanofibers incorporated with Co3O4 hollow nanoparticles as self-supported electrodes for electrochemical capacitors. Advanced Functional Materials, 2013, 23(31): 3909–3915
https://doi.org/10.1002/adfm.201203844
|
20 |
M Tebyetekerwa, X Wang, Y Wu, et al.. Controlled synergistic strategy to fabricate 3D-skeletal hetero-nanosponges with high performance for flexible energy storage applications. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(40): 21114–21121
https://doi.org/10.1039/C7TA06242G
|
21 |
M Tebyetekerwa, S Yang, S Peng, et al.. Unveiling polyindole: freestanding as-electrospun polyindole nanofibers and polyindole/carbon nanotubes composites as enhanced electrodes for flexible all-solid-state supercapacitors. Electrochimica Acta, 2017, 247: 400–409
https://doi.org/10.1016/j.electacta.2017.07.038
|
22 |
W Wang, S Wu. A new ternary composite based on carbon nanotubes/polyindole/graphene with preeminent electrocapacitive performance for supercapacitors. Applied Surface Science, 2017, 396: 1360–1367
https://doi.org/10.1016/j.apsusc.2016.11.167
|
23 |
Q Zhou, D Zhu, X Ma, et al.. PEDOT:PSS-assisted polyindole hollow nanospheres modified carbon cloth as high performance electrochemical capacitor electrodes. Electrochimica Acta, 2016, 212: 662–670
https://doi.org/10.1016/j.electacta.2016.07.064
|
24 |
M Majumder, R B Choudhary, S P Koiry, et al.. Gravimetric and volumetric capacitive performance of polyindole/carbon black/MoS2 hybrid electrode material for supercapacitor applications. Electrochimica Acta, 2017, 248: 98–111
https://doi.org/10.1016/j.electacta.2017.07.107
|
25 |
X Zhou, Q Chen, A Wang, et al.. Bamboo-like composites of V2O5/polyindole and activated carbon cloth as electrodes for all-solid-state flexible asymmetric supercapacitors. ACS Applied Materials & Interfaces, 2016, 8(6): 3776–3783
https://doi.org/10.1021/acsami.5b10196
pmid: 26796859
|
26 |
X Zhou, A Q Wang, Y M Pan, et al.. Facile synthesis of a Co3O4@carbon nanotubes/polyindole composite and its application in all-solid-state flexible supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(24): 13011–13015
https://doi.org/10.1039/C5TA01906K
|
27 |
R P Raj, P Ragupathy, S Mohan. Remarkable capacitive behavior of a Co3O4–polyindole composite as electrode material for supercapacitor applications. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(48): 24338–24348
https://doi.org/10.1039/C5TA07046E
|
28 |
Y N Chang, W Q Zhou, J Wu, et al.. High-performance flexible-film supercapacitors of layered hydrous RuO2/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) through vacuum filtration. Electrochimica Acta, 2018, 283: 744–754
https://doi.org/10.1016/j.electacta.2018.06.044
|
29 |
P R Deshmukh, R N Bulakhe, S N Pusawale, et al.. Polyaniline–RuO2 composite for high performance supercapacitors: chemical synthesis and properties. RSC Advances, 2015, 5(36): 28687–28695
https://doi.org/10.1039/C4RA16969G
|
30 |
W Zheng, Q M Cheng, D W Wang, et al.. High-performance solid-state on-chip supercapacitors based on Si nanowires coated with ruthenium oxide via atomic layer deposition. Journal of Power Sources, 2017, 341: 1–10
https://doi.org/10.1016/j.jpowsour.2016.11.093
|
31 |
Z S Wu, D W Wang, W Ren, et al.. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Advanced Functional Materials, 2010, 20(20): 3595–3602
https://doi.org/10.1002/adfm.201001054
|
32 |
W Wang, S Guo, I Lee, et al.. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Scientific Reports, 2014, 4(1): 4452
https://doi.org/10.1038/srep04452
pmid: 24663242
|
33 |
S Cho, M Kim, J Jang. Screen-printable and flexible RuO2 nanoparticle-decorated PEDOT:PSS/graphene nanocomposite with enhanced electrical and electrochemical performances for high-capacity supercapacitor. ACS Applied Materials & Interfaces, 2015, 7(19): 10213–10227
https://doi.org/10.1021/acsami.5b00657
pmid: 25955977
|
34 |
Z Yu, L Tetard, L Zhai, et al.. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy & Environmental Science, 2015, 8(3): 702–730
https://doi.org/10.1039/C4EE03229B
|
35 |
C Li, Y H Chen, Y B Wang, et al.. A fullerene–single wall carbon nanotube complex for polymer bulk heterojunction photovoltaic cells. Journal of Materials Chemistry, 2007, 17(23): 2406–2411
https://doi.org/10.1039/B618518E
|
36 |
J Mink, J Kristof, A D Battisti, et al.. Investigation on the formation of RuO2-based mixed-oxide coatings by spectroscopic methods. Surface Science, 1995, 335(1–3): 252–257
https://doi.org/10.1016/0039-6028(95)00439-4
|
37 |
X M Ma, W Q Zhou, D Z Mo, et al.. One-step template-free electrodeposition of novel poly (indole-7-carboxylic acid) nanowires and their high capacitance properties. RSC Advances, 2015, 5(5): 3215–3223
https://doi.org/10.1039/C4RA11586D
|
38 |
Y T Kim, K Tadai, T Mitani. Highly dispersed ruthenium oxide nanoparticles on carboxylated carbon nanotubes for supercapacitor electrode materials. Journal of Materials Chemistry, 2005, 15(46): 4914–4921
https://doi.org/10.1039/b511869g
|
39 |
W D Zhang, B Xu, L C Jiang. Functional hybrid materials based on carbon nanotubes and metal oxides. Journal of Materials Chemistry, 2010, 20(31): 6383–6391
https://doi.org/10.1039/b926341a
|
40 |
M Zhi, C Xiang, J Li, et al.. Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale, 2013, 5(1): 72–88
https://doi.org/10.1039/C2NR32040A
pmid: 23151936
|
41 |
K Wang, Q H Meng, Y J Zhang, et al.. High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Advanced Materials, 2013, 25(10): 1494–1498
https://doi.org/10.1002/adma.201204598
pmid: 23300025
|
42 |
W J Wang, W Lei, T Y Yao, et al.. One-pot synthesis of graphene/SnO2/PEDOT ternary electrode material for supercapacitors. Electrochimica Acta, 2013, 108: 118–126
https://doi.org/10.1016/j.electacta.2013.07.012
|
43 |
Y H Jin, M Q Jia. Design and synthesis of nanostructured graphene–SnO2–polyaniline ternary composite and their excellent supercapacitor performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 464: 17–25
https://doi.org/10.1016/j.colsurfa.2014.09.032
|
44 |
Y C Eeu, H N Lim, Y S Lim, et al.. Electrodeposition of polypyrrole/reduced graphene oxide/iron oxide nanocomposite as supercapacitor electrode material. Journal of Nanomaterials, 2013, 2013: 653890 (6 pages)
https://doi.org/10.1155/2013/653890
|
45 |
D Yan, Y Liu, Y H Li, et al.. Synthesis and electrochemical properties of MnO2/rGO/PEDOT:PSS ternary composite electrode material for supercapacitors. Materials Letters, 2014, 127: 53–55
https://doi.org/10.1016/j.matlet.2014.04.086
|
46 |
G X Wang, Q Q Tang, H Bao, et al.. Synthesis of hierarchical sulfonated graphene/MnO2/polyaniline ternary composite and its improved electrochemical performance. Journal of Power Sources, 2013, 241: 231–238
https://doi.org/10.1016/j.jpowsour.2013.04.122
|
47 |
B S Singu, U Male, P Srinivasan, et al.. Preparation and performance of polyaniline–multiwall carbon nanotubes–titanium dioxide ternary composite electrode material for supercapacitors. Journal of Industrial and Engineering Chemistry, 2017, 49: 82–87
https://doi.org/10.1016/j.jiec.2017.01.010
|
48 |
J T Zhang, J W Jiang, H L Li, et al.. A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy & Environmental Science, 2011, 4(10): 4009–4015
https://doi.org/10.1039/c1ee01354h
|
49 |
Z Peng, X Liu, H Meng, et al.. Design and tailoring of the 3D macroporous hydrous RuO2 hierarchical architectures with a hard-template method for high-performance supercapacitors. ACS Applied Materials & Interfaces, 2017, 9(5): 4577–4586
https://doi.org/10.1021/acsami.6b12532
pmid: 27966895
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|