Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2020, Vol. 14 Issue (2) : 109-119    https://doi.org/10.1007/s11706-020-0497-5
RESEARCH ARTICLE
Two-step preparation of carbon nanotubes/RuO2/polyindole ternary nanocomposites and their application as high-performance supercapacitors
Danhua ZHU1, Qianjie ZHOU1, Aiqin LIANG1, Weiqiang ZHOU1(), Yanan CHANG1, Danqin LI1, Jing WU1, Guo YE1, Jingkun XU1(), Yong REN2
1. Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
2. Department of Mathematical Sciences, Zibo Normal College, Zibo 255130, China
 Download: PDF(1718 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A ternary single-walled carbon nanotubes/RuO2/polyindole (SWCNT/RuO2/PIn) nanocomposite was fabricated by the oxidation polymerization of indole on the prefabricated SWCNT/RuO2 binary nanocomposites. The nanocomposite was measured by FTIR, XRD, SEM, TEM, EDS and XPS, together with the electrochemical technique. The electrochemical results demonstrated that the symmetric supercapacitor used SWCNT/RuO2/PIn as electrodes presented 95% retention rate after 10000 cycles, superior capacitive performance of 1203 F·g−1 at 1 A·g−1, and high energy density of 33 W·h·kg−1 at 5000 W·kg−1. The high capacitance performance of SWCNT/RuO2/PIn nanocomposite was mainly ascribed to the beneficial cooperation effect among components. This indicated that the SWCNT/RuO2/PIn nanocomposite would be a good candidate for high-performance supercapacitors.

Keywords SWCNT/RuO2/PIn      nanocomposite      supercapacitor     
Corresponding Author(s): Weiqiang ZHOU,Jingkun XU   
Online First Date: 06 May 2020    Issue Date: 27 May 2020
 Cite this article:   
Danhua ZHU,Qianjie ZHOU,Aiqin LIANG, et al. Two-step preparation of carbon nanotubes/RuO2/polyindole ternary nanocomposites and their application as high-performance supercapacitors[J]. Front. Mater. Sci., 2020, 14(2): 109-119.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-020-0497-5
https://academic.hep.com.cn/foms/EN/Y2020/V14/I2/109
Fig.1  (a) The preparation process of SWCNT/RuO2/PIn nanocomposite. SEM images of (b) SWCNT/PIn, (c) SWCNT/RuO2 and (d) SWCNT/RuO2/PIn samples. (e) Elemental mapping images of SWCNT/RuO2/PIn.
Fig.2  TEM images of (a) SWCNT, (b) SWCNT/PIn, (c) SWCNT/RuO2 and (d) SWCNT/RuO2/PIn.
Fig.3  (a) XRD, (b) FTIR and (c) XPS spectra of SWCNT, RuO2, SWCNT/RuO2, SWCNT/PIn and SWCNT/RuO2/PIn samples.
Fig.4  Electrochemical performance of SWCNT/PIn, SWCNT/RuO2 and SWCNT/RuO2/PIn electrodes: (a) CV at 5 mV·s−1; (b) GCD at 0.5 A·g−1; (c) the relationship between specific capacitance and scan rate; (d) the relationship between specific capacitance and current densities; (e) Nyquist plots; (f) cycle life.
Fig.5  Scheme 1 Reaction mechanisms of RuO2 and PIn electrodes in H2SO4 solution, respectively.
Ternary composite Specific capacitance Capacitance retention Refs.
MnO2/PPy/CNF 705 F·g−1 at 2 mV·s−1 91% after 2000 cycles at 12 mA·cm−2 [14]
CNT@PPy@MnO2 325 F·g−1 at 2 mV·s−1 90.2% after 1000 cycles at 100 mV·s−1 [15]
CNT/PAN/MnO2 330 F·g−1 at 5 mV·s−1 77% after 1000 cycles at 20 mV·s−1 [16]
PIn/CNT 555 F·g−1 at 1.0 A·g−1 96.9% after 2000 cycles at 20 mV·s−1 [20]
V2O5/PIn/carbon cloth 535.3 F·g−1 at 1.0 A·g−1 91% after 5000 cycles at 10 A·g−1 [25]
RGO/RuO2/PEDOT 184 F·g−1 at 1 mV·s−1 70% after 5000 cycles at 1 A·g−1 [42]
GE–SnO2–PAN 913.4 F·g−1 at 5 mV·s−1 90.8% after 1000 cycles at 1.2 A·g−1 [43]
PPy/RGO/Fe2O3 125.7 F·g−1 at 0.5 A·g−1 81.3% after 200 cycles at 0.5 A·g−1 [44]
MnO2/rGO/PEDOT:PSS 169.1 F·g−1 at 0.2 A·g−1 66.2% after 2000 cycles at 10 A·g−1 [45]
SG/MnO2/PAN 276 F·g−1 at 1 A·g−1 88.3% after 3000 cycles at 1 A·g−1 [46]
PAN–MWNTs–TiO2 525 F·g−1 at 1 mV·s−1 67% after 6000 cycles at 4 A·g−1 [47]
RGO/RuO2 357 F·g−1 at 0.3 A·g−1 70% after 2500 cyclesat 16 A·g−1 [48]
RuO2 networks 628 F·g−1 at 0.5 A·g−1 86% after 4000 cycles at 5.0 A·g−1 [49]
RuO2/PEDOT:PSS/GE 820 F g−1 at 0.5 A·g−1 81.5% after 1000 cycles at 0.5 A·g−1 [33]
SWCNT/RuO2/PIn 1307 F·g−1 at 0.5 A·g−1 93% after 3000 cycles at 30 A·g−1 this work
Tab.1  Capacitance and cycling life comparison of SWCNT/RuO2/PIn with some important composites materials [1416,20,25,33,4249]
Fig.6  Electrochemical performance of the supercapacitor based on SWCNT/RuO2/PIn: (a) CV at different scan rates; (b) specific capacitance as a function of current density (inset: GCD at different current densities); (c) Ragone plots of supercapacitor in comparison with the values reported for other devices; (d) cycle life at 10 A·g−1.
  Fig. S1 The energy dispersive spectroscopy (EDS) result of SWCNT/RuO2/PIn.
  Fig. S2 The XRD pattern of rutile RuO2 (JCPDS card No. 43-1027).
  Fig. S3 CV curves of RuO2, PIn, SWCNT/PIn and SWCNT/RuO2 electrodes in 1.0 mol·L−1 H2SO4 solution at 10 mV·s−1.
  Fig. S4 Electrochemical performance of the SWCNT electrode: (a) CV curves at different scan rates; (b) GCD at different current densities; (c) the relationship between specific capacitance and current density; (d) the Nyquist plot.
1 L L Zhang, X S Zhao. Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 2009, 38(9): 2520–2531
https://doi.org/10.1039/b813846j pmid: 19690733
2 P Simon, Y Gogotsi. Materials for electrochemical capacitors. Nature Materials, 2008, 7(11): 845–854
https://doi.org/10.1038/nmat2297 pmid: 18956000
3 Sellam, S A Hashmi. High rate performance of flexible pseudocapacitors fabricated using ionic-liquid-based proton conducting polymer electrolyte with poly(3, 4-ethylenedioxythiophene):poly(styrene sulfonate) and its hydrous ruthenium oxide composite electrodes. ACS Applied Materials & Interfaces, 2013, 5(9): 3875–3883
https://doi.org/10.1021/am4005557 pmid: 23548059
4 A Q Liang, D Q Li, W Q Zhou, et al.. Robust flexible WS2/PEDOT:PSS film for use in high-performance miniature supercapacitors. Journal of Electroanalytical Chemistry, 2018, 824: 136–146
https://doi.org/10.1016/j.jelechem.2018.07.040
5 L Zhang, H Gu, H Sun, et al.. Molecular level one-step activation of agar to activated carbon for high performance supercapacitors. Carbon, 2018, 132: 573–579
https://doi.org/10.1016/j.carbon.2018.02.100
6 Y Kumar, G P Pandey, S A Hashmi. Gel polymer electrolyte based electrical double layer capacitors: comparative study with multiwalled carbon nanotubes and activated carbon electrodes. The Journal of Physical Chemistry C, 2012, 116(50): 26118–26127
https://doi.org/10.1021/jp305128z
7 V Barranco, M A Lillo-Rodenas, A Linares-Solano, et al.. Amorphous carbon nanofibers and their activated carbon nanofibers as supercapacitor electrodes. The Journal of Physical Chemistry C, 2010, 114(22): 10302–10307
https://doi.org/10.1021/jp1021278
8 M D Stoller, S Park, Y Zhu, et al.. Graphene-based ultracapacitors. Nano Letters, 2008, 8(10): 3498–3502
https://doi.org/10.1021/nl802558y pmid: 18788793
9 S Biswas, L T Drzal. Multilayered nano-architecture of variable sized graphene nanosheets for enhanced supercapacitor electrode performance. ACS Applied Materials & Interfaces, 2010, 2(8): 2293–2300
https://doi.org/10.1021/am100343a pmid: 20735100
10 W Q Zhou, X M Ma, F X Jiang, et al.. Electrochemical fabrication of a porous network MnO2/poly(5-cyanoindole) composite and its capacitance performance. Electrochimica Acta, 2014, 138: 270–277
https://doi.org/10.1016/j.electacta.2014.06.123
11 G Wang, L Zhang, J Zhang. A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2012, 41(2): 797–828
https://doi.org/10.1039/C1CS15060J pmid: 21779609
12 Y Hou, Y Cheng, T Hobson, et al.. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Letters, 2010, 10(7): 2727–2733
https://doi.org/10.1021/nl101723g pmid: 20586479
13 P Lv, Y Y Feng, Y Li, et al.. Carbon fabric-aligned carbon nanotube/MnO2/conducting polymers ternary composite electrodes with high utilization and mass loading of MnO2 for super-capacitors. Journal of Power Sources, 2012, 220: 160–168
https://doi.org/10.1016/j.jpowsour.2012.07.073
14 J G Wang, Y Yang, Z H Huang, et al.. Rational synthesis of MnO2/conducting polypyrrole@carbon nanofiber triaxial nano-cables for high-performance supercapacitors. Journal of Materials Chemistry, 2012, 22(33): 16943–16949
https://doi.org/10.1039/c2jm33364c
15 P Li, Y Yang, E Shi, et al.. Core–double-shell, carbon nanotube@polypyrrole@MnO2 sponge as freestanding, compressible supercapacitor electrode. ACS Applied Materials & Interfaces, 2014, 6(7): 5228–5234
https://doi.org/10.1021/am500579c pmid: 24621200
16 Q Li, J Liu, J Zou, et al.. Synthesis and electrochemical performance of multi-walled carbon nanotube/polyaniline/MnO2 ternary coaxial nanostructures for supercapacitors. Journal of Power Sources, 2011, 196(1): 565–572
https://doi.org/10.1016/j.jpowsour.2010.06.073
17 W Q Zhou, J K Xu. Progress in conjugated polyindoles: synthesis, polymerization mechanisms, properties, and applications. Polymer Reviews, 2017, 57(2): 248–275
https://doi.org/10.1080/15583724.2016.1223130
18 Q J Zhou, D H Zhu, X M Ma, et al.. High-performance capacitive behavior of layered reduced graphene oxide and polyindole nanocomposite materials. RSC Advances, 2016, 6(35): 29840–29847
https://doi.org/10.1039/C5RA27375G
19 F Zhang, C Yuan, J Zhu, et al.. Flexible films derived from electrospun carbon nanofibers incorporated with Co3O4 hollow nanoparticles as self-supported electrodes for electrochemical capacitors. Advanced Functional Materials, 2013, 23(31): 3909–3915
https://doi.org/10.1002/adfm.201203844
20 M Tebyetekerwa, X Wang, Y Wu, et al.. Controlled synergistic strategy to fabricate 3D-skeletal hetero-nanosponges with high performance for flexible energy storage applications. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(40): 21114–21121
https://doi.org/10.1039/C7TA06242G
21 M Tebyetekerwa, S Yang, S Peng, et al.. Unveiling polyindole: freestanding as-electrospun polyindole nanofibers and polyindole/carbon nanotubes composites as enhanced electrodes for flexible all-solid-state supercapacitors. Electrochimica Acta, 2017, 247: 400–409
https://doi.org/10.1016/j.electacta.2017.07.038
22 W Wang, S Wu. A new ternary composite based on carbon nanotubes/polyindole/graphene with preeminent electrocapacitive performance for supercapacitors. Applied Surface Science, 2017, 396: 1360–1367
https://doi.org/10.1016/j.apsusc.2016.11.167
23 Q Zhou, D Zhu, X Ma, et al.. PEDOT:PSS-assisted polyindole hollow nanospheres modified carbon cloth as high performance electrochemical capacitor electrodes. Electrochimica Acta, 2016, 212: 662–670
https://doi.org/10.1016/j.electacta.2016.07.064
24 M Majumder, R B Choudhary, S P Koiry, et al.. Gravimetric and volumetric capacitive performance of polyindole/carbon black/MoS2 hybrid electrode material for supercapacitor applications. Electrochimica Acta, 2017, 248: 98–111
https://doi.org/10.1016/j.electacta.2017.07.107
25 X Zhou, Q Chen, A Wang, et al.. Bamboo-like composites of V2O5/polyindole and activated carbon cloth as electrodes for all-solid-state flexible asymmetric supercapacitors. ACS Applied Materials & Interfaces, 2016, 8(6): 3776–3783
https://doi.org/10.1021/acsami.5b10196 pmid: 26796859
26 X Zhou, A Q Wang, Y M Pan, et al.. Facile synthesis of a Co3O4@carbon nanotubes/polyindole composite and its application in all-solid-state flexible supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(24): 13011–13015
https://doi.org/10.1039/C5TA01906K
27 R P Raj, P Ragupathy, S Mohan. Remarkable capacitive behavior of a Co3O4–polyindole composite as electrode material for supercapacitor applications. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(48): 24338–24348
https://doi.org/10.1039/C5TA07046E
28 Y N Chang, W Q Zhou, J Wu, et al.. High-performance flexible-film supercapacitors of layered hydrous RuO2/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) through vacuum filtration. Electrochimica Acta, 2018, 283: 744–754
https://doi.org/10.1016/j.electacta.2018.06.044
29 P R Deshmukh, R N Bulakhe, S N Pusawale, et al.. Polyaniline–RuO2 composite for high performance supercapacitors: chemical synthesis and properties. RSC Advances, 2015, 5(36): 28687–28695
https://doi.org/10.1039/C4RA16969G
30 W Zheng, Q M Cheng, D W Wang, et al.. High-performance solid-state on-chip supercapacitors based on Si nanowires coated with ruthenium oxide via atomic layer deposition. Journal of Power Sources, 2017, 341: 1–10
https://doi.org/10.1016/j.jpowsour.2016.11.093
31 Z S Wu, D W Wang, W Ren, et al.. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Advanced Functional Materials, 2010, 20(20): 3595–3602
https://doi.org/10.1002/adfm.201001054
32 W Wang, S Guo, I Lee, et al.. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Scientific Reports, 2014, 4(1): 4452
https://doi.org/10.1038/srep04452 pmid: 24663242
33 S Cho, M Kim, J Jang. Screen-printable and flexible RuO2 nanoparticle-decorated PEDOT:PSS/graphene nanocomposite with enhanced electrical and electrochemical performances for high-capacity supercapacitor. ACS Applied Materials & Interfaces, 2015, 7(19): 10213–10227
https://doi.org/10.1021/acsami.5b00657 pmid: 25955977
34 Z Yu, L Tetard, L Zhai, et al.. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy & Environmental Science, 2015, 8(3): 702–730
https://doi.org/10.1039/C4EE03229B
35 C Li, Y H Chen, Y B Wang, et al.. A fullerene–single wall carbon nanotube complex for polymer bulk heterojunction photovoltaic cells. Journal of Materials Chemistry, 2007, 17(23): 2406–2411
https://doi.org/10.1039/B618518E
36 J Mink, J Kristof, A D Battisti, et al.. Investigation on the formation of RuO2-based mixed-oxide coatings by spectroscopic methods. Surface Science, 1995, 335(1–3): 252–257
https://doi.org/10.1016/0039-6028(95)00439-4
37 X M Ma, W Q Zhou, D Z Mo, et al.. One-step template-free electrodeposition of novel poly (indole-7-carboxylic acid) nanowires and their high capacitance properties. RSC Advances, 2015, 5(5): 3215–3223
https://doi.org/10.1039/C4RA11586D
38 Y T Kim, K Tadai, T Mitani. Highly dispersed ruthenium oxide nanoparticles on carboxylated carbon nanotubes for supercapacitor electrode materials. Journal of Materials Chemistry, 2005, 15(46): 4914–4921
https://doi.org/10.1039/b511869g
39 W D Zhang, B Xu, L C Jiang. Functional hybrid materials based on carbon nanotubes and metal oxides. Journal of Materials Chemistry, 2010, 20(31): 6383–6391
https://doi.org/10.1039/b926341a
40 M Zhi, C Xiang, J Li, et al.. Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale, 2013, 5(1): 72–88
https://doi.org/10.1039/C2NR32040A pmid: 23151936
41 K Wang, Q H Meng, Y J Zhang, et al.. High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Advanced Materials, 2013, 25(10): 1494–1498
https://doi.org/10.1002/adma.201204598 pmid: 23300025
42 W J Wang, W Lei, T Y Yao, et al.. One-pot synthesis of graphene/SnO2/PEDOT ternary electrode material for supercapacitors. Electrochimica Acta, 2013, 108: 118–126
https://doi.org/10.1016/j.electacta.2013.07.012
43 Y H Jin, M Q Jia. Design and synthesis of nanostructured graphene–SnO2–polyaniline ternary composite and their excellent supercapacitor performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 464: 17–25
https://doi.org/10.1016/j.colsurfa.2014.09.032
44 Y C Eeu, H N Lim, Y S Lim, et al.. Electrodeposition of polypyrrole/reduced graphene oxide/iron oxide nanocomposite as supercapacitor electrode material. Journal of Nanomaterials, 2013, 2013: 653890 (6 pages)
https://doi.org/10.1155/2013/653890
45 D Yan, Y Liu, Y H Li, et al.. Synthesis and electrochemical properties of MnO2/rGO/PEDOT:PSS ternary composite electrode material for supercapacitors. Materials Letters, 2014, 127: 53–55
https://doi.org/10.1016/j.matlet.2014.04.086
46 G X Wang, Q Q Tang, H Bao, et al.. Synthesis of hierarchical sulfonated graphene/MnO2/polyaniline ternary composite and its improved electrochemical performance. Journal of Power Sources, 2013, 241: 231–238
https://doi.org/10.1016/j.jpowsour.2013.04.122
47 B S Singu, U Male, P Srinivasan, et al.. Preparation and performance of polyaniline–multiwall carbon nanotubes–titanium dioxide ternary composite electrode material for supercapacitors. Journal of Industrial and Engineering Chemistry, 2017, 49: 82–87
https://doi.org/10.1016/j.jiec.2017.01.010
48 J T Zhang, J W Jiang, H L Li, et al.. A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy & Environmental Science, 2011, 4(10): 4009–4015
https://doi.org/10.1039/c1ee01354h
49 Z Peng, X Liu, H Meng, et al.. Design and tailoring of the 3D macroporous hydrous RuO2 hierarchical architectures with a hard-template method for high-performance supercapacitors. ACS Applied Materials & Interfaces, 2017, 9(5): 4577–4586
https://doi.org/10.1021/acsami.6b12532 pmid: 27966895
[1] Dandan HAN, Jinhe WEI, Shanshan WANG, Yifan PAN, Junli XUE, Yen WEI. Feather-like NiCo2O4 self-assemble from porous nanowires as binder-free electrodes for low charge transfer resistance[J]. Front. Mater. Sci., 2020, 14(4): 450-458.
[2] Yun ZHAO, Linan YANG, Canliang MA. One-step gas-phase construction of carbon-coated Fe3O4 nanoparticle/carbon nanotube composite with enhanced electrochemical energy storage[J]. Front. Mater. Sci., 2020, 14(2): 145-154.
[3] Meenaketan SETHI, U. Sandhya SHENOY, Selvakumar MUTHU, D. Krishna BHAT. Facile solvothermal synthesis of NiFe2O4 nanoparticles for high-performance supercapacitor applications[J]. Front. Mater. Sci., 2020, 14(2): 120-132.
[4] Yanlin JIA, Zhiyuan MA, Zhicheng LI, Zhenli HE, Junming SHAO, Hong ZHANG. Electrochemical performances of NiO/Ni2N nanocomposite thin film as anode material for lithium ion batteries[J]. Front. Mater. Sci., 2019, 13(4): 367-374.
[5] Liuxin YANG, Zhou CHEN, Jian ZHANG, Chang-An WANG. SrTiO3/TiO2 heterostructure nanowires with enhanced electron--hole separation for efficient photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 342-351.
[6] Chengzhi LUO, Guanghui LIU, Min ZHANG. Electric-field-induced microstructure modulation of carbon nanotubes for high-performance supercapacitors[J]. Front. Mater. Sci., 2019, 13(3): 270-276.
[7] Bin CAI, Changxiang SHAO, Liangti QU, Yuning MENG, Lin JIN. Preparation of sulfur-doped graphene fibers and their application in flexible fibriform micro-supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 145-155.
[8] Meng LIU, Lei LIU, Yifeng YU, Haijun LV, Aibing CHEN, Senlin HOU. Synthesis of nitrogen-doped carbon spheres using the modified Stöber method for supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 156-164.
[9] Haiyan LI, Yucheng ZHAO, Chang-An WANG. MoS2/CoS2 composites composed of CoS2 octahedrons and MoS2 nano-flowers for supercapacitor electrode materials[J]. Front. Mater. Sci., 2018, 12(4): 354-360.
[10] Wei LI, Lizhong ZHAO, Zhongwu LIU. Micromagnetic simulation on magnetic properties of Nd2Fe14B/α-Fe nanocomposites with Fe nanowires as the soft phase[J]. Front. Mater. Sci., 2018, 12(4): 348-353.
[11] M. Mohamed Jaffer SADIQ, U. Sandhya SHENOY, D. Krishna BHAT. Synthesis of BaWO4/NRGO‒g-C3N4 nanocomposites with excellent multifunctional catalytic performance via microwave approach[J]. Front. Mater. Sci., 2018, 12(3): 247-263.
[12] Wang YANG, Wu YANG, Lina KONG, Shuanlong DI, Xiujuan QIN. Nitrogen--oxygen co-doped corrugation-like porous carbon for high performance supercapacitor[J]. Front. Mater. Sci., 2018, 12(3): 283-291.
[13] Ke ZHAN, Tong YIN, Yuan XUE, Yinwen TAN, Yihao ZHOU, Ya YAN, Bin ZHAO. A two-step approach to synthesis of Co(OH)2/γ-NiOOH/reduced graphene oxide nanocomposite for high performance supercapacitors[J]. Front. Mater. Sci., 2018, 12(3): 273-282.
[14] Jiangli XUE, Maosong MO, Zhuming LIU, Dapeng YE, Zhihua CHENG, Tong XU, Liangti QU. A general synthesis strategy for the multifunctional 3D polypyrrole foam of thin 2D nanosheets[J]. Front. Mater. Sci., 2018, 12(2): 105-117.
[15] Jagpreet SINGH, Aditi RATHI, Mohit RAWAT, Manoj GUPTA. Graphene: from synthesis to engineering to biosensor applications[J]. Front. Mater. Sci., 2018, 12(1): 1-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed