|
|
A general synthesis strategy for the multifunctional 3D polypyrrole foam of thin 2D nanosheets |
Jiangli XUE1, Maosong MO1,2( ), Zhuming LIU1, Dapeng YE2( ), Zhihua CHENG3, Tong XU3, Liangti QU3 |
1. Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China 2. College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China 3. Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science (Ministry of Education), Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract A 3D macroporous conductive polymer foam of thin 2D polypyrrole (PPy) nanosheets is developed by adopting a novel intercalation of guest (monomer Py) between the layers of the lamellar host (3D vanadium oxide foam) template-replication strategy. The 3D PPy foam of thin 2D nanosheets exhibits diverse functions including reversible compressibility, shape memory, absorption/adsorption and mechanically deformable supercapacitor characteristics. The as-prepared 3D PPy foam of thin nanosheets is highly light weight with a density of 12 mg·cm−3 which can bear the large compressive strain up to 80% whether in wet or dry states; and can absorb organic solutions or extract dye molecules fast and efficiently. In particular, the PPy nanosheet-based foam as a mechanically deformable electrode material for supercapacitors exhibits high specific capacitance of 70 F·g−1 at a fast charge–discharge rate of 50 mA·g−1, superior to that of any other typical pure PPy-based capacitor. We envision that the strategy presented here should be applicable to fabrication of a wide variety of organic polymer foams and hydrogels of low-dimensional nanostructures and even inorganic foams and hydrogels of low-dimensional nanostructures, and thus allow for exploration of their advanced physical and chemical properties.
|
Keywords
intercalation polymerization
polypyrrole
nanosheet
supercapacitor
foam
multifunctionality
|
Corresponding Author(s):
Maosong MO,Dapeng YE
|
Issue Date: 29 May 2018
|
|
1 |
Lu A H, Schüth F. Nanocasting: A versatile strategy for creating nanostructured porous materials. Advanced Materials, 2006, 18(14): 1793–1805
https://doi.org/10.1002/adma.200600148
|
2 |
Davis M E. Ordered porous materials for emerging applications. Nature, 2002, 417(6891): 813–821
https://doi.org/10.1038/nature00785
pmid: 12075343
|
3 |
Schaedler T A, Jacobsen A J, Torrents A, et al.. Ultralight metallic microlattices. Science, 2011, 334(6058): 962–965
https://doi.org/10.1126/science.1211649
pmid: 22096194
|
4 |
Zheng X, Lee H, Weisgraber T H, et al.. Ultralight, ultrastiff mechanical metamaterials. Science, 2014, 344(6190): 1373–1377
https://doi.org/10.1126/science.1252291
pmid: 24948733
|
5 |
Sun H, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Advanced Materials, 2013, 25(18): 2554–2560
https://doi.org/10.1002/adma.201204576
pmid: 23418099
|
6 |
Kistler S S. Coherent expanded aerogels and jellies. Nature, 1931, 127(3211): 741
https://doi.org/10.1038/127741a0
|
7 |
Tillotson T M, Hrubesh L W. Transparent ultralow-density silica aerogels prepared by a two-step sol‒gel process. Journal of Non-Crystalline Solids, 1992, 145: 44–50
https://doi.org/10.1016/S0022-3093(05)80427-2
|
8 |
Tappan B C, Huynh M H, Hiskey M A, et al.. Ultralow-density nanostructured metal foams: combustion synthesis, morphology, and composition. Journal of the American Chemical Society, 2006, 128(20): 6589–6594
https://doi.org/10.1021/ja056550k
pmid: 16704258
|
9 |
Verdooren A, Chan H M, Grenestedt J L, et al.. Fabrication of low-density ferrous metallic foams by reduction of chemically bonded ceramic foams. Journal of the American Ceramic Society, 2006, 89(10): 3101–3106
https://doi.org/10.1111/j.1551-2916.2006.01225.x
|
10 |
Zou J, Liu J, Karakoti A S, et al.. Ultralight multiwalled carbon nanotube aerogel. ACS Nano, 2010, 4(12): 7293–7302
https://doi.org/10.1021/nn102246a
pmid: 21090673
|
11 |
Zhao Y, Hu C, Hu Y, et al.. A versatile, ultralight, nitrogen-doped graphene framework. Angewandte Chemie International Edition, 2012, 51(45): 11371–11375
https://doi.org/10.1002/anie.201206554
pmid: 23060007
|
12 |
Wang C, Ding Y, Yuan Y, et al.. Multifunctional, highly flexible, free-standing 3D polypyrrole foam. Small, 2016, 12(30): 4070–4076
https://doi.org/10.1002/smll.201601905
pmid: 27357260
|
13 |
Novoselov K S, Geim A K, Morozov S V, et al.. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
https://doi.org/10.1126/science.1102896
pmid: 15499015
|
14 |
Xu Y, Sheng K, Li C, et al.. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano, 2010, 4(7): 4324–4330
https://doi.org/10.1021/nn101187z
pmid: 20590149
|
15 |
Lee H S, Min S W, Chang Y G, et al.. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Letters, 2012, 12(7): 3695–3700
https://doi.org/10.1021/nl301485q
pmid: 22681413
|
16 |
Zhu J, Cao L, Wu Y, et al.. Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors. Nano Letters, 2013, 13(11): 5408–5413
https://doi.org/10.1021/nl402969r
pmid: 24148090
|
17 |
Shi Y, Peng L, Ding Y, et al.. Nanostructured conductive polymers for advanced energy storage. Chemical Society Reviews, 2015, 44(19): 6684–6696
https://doi.org/10.1039/C5CS00362H
pmid: 26119242
|
18 |
Yang Y L, Gupta M C, Dudley K L, et al.. Conductive carbon nanofiber‒polymer foam structures. Advanced Materials, 2005, 17(16): 1999–2003
https://doi.org/10.1002/adma.200500615
|
19 |
Liu J, Wang Z, Zhao Y, et al.. Three-dimensional graphene‒polypyrrole hybrid electrochemical actuator. Nanoscale, 2012, 4(23): 7563–7568
https://doi.org/10.1039/c2nr32699j
pmid: 23108294
|
20 |
Xie P, Rong M Z, Zhang M Q. Moisture battery formed by direct contact of magnesium with foamed polyaniline. Angewandte Chemie International Edition, 2016, 55(5): 1805–1809
https://doi.org/10.1002/anie.201510686
pmid: 26696566
|
21 |
Xie A, Wu F, Jiang W, et al.. Chiral induced synthesis of helical polypyrrole (PPy) nano-structures: a lightweight and high-performance material against electromagnetic pollution. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2017, 5(8): 2175–2181
https://doi.org/10.1039/C6TC05057C
|
22 |
Berdichevsky Y, Lo Y H. Polypyrrole nanowire actuators. Advanced Materials, 2006, 18(1): 122–125
https://doi.org/10.1002/adma.200501621
|
23 |
Yang X, Lin Z, Zheng J, et al.. Facile template-free synthesis of vertically aligned polypyrrole nanosheets on nickel foams for flexible all-solid-state asymmetric supercapacitors. Nanoscale, 2016, 8(16): 8650–8657
https://doi.org/10.1039/C6NR00468G
pmid: 27050711
|
24 |
Liu S, Gordiichuk P, Wu Z S, et al.. Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers. Nature Communications, 2015, 6(1): 8817
https://doi.org/10.1038/ncomms9817
pmid: 26577914
|
25 |
Mahmoudian M R, Alias Y, Basirun W J, et al.. Preparation of ultra-thin polypyrrole nanosheets decorated with Ag nanoparticles and their application in hydrogen peroxide detection. Electrochimica Acta, 2012, 72(4): 46–52
https://doi.org/10.1016/j.electacta.2012.03.144
|
26 |
Xue J L, Zhao F, Hu C G, et al.. Vapor-activated power generation on conductive polymer. Advanced Functional Materials, 2016, 26(47): 8784–8792
https://doi.org/10.1002/adfm.201604188
|
27 |
Xue J, Hu C, Lv L, et al.. Re-shaping graphene hydrogels for effectively enhancing actuation responses. Nanoscale, 2015, 7(29): 12372–12378
https://doi.org/10.1039/C5NR02604K
pmid: 26130158
|
28 |
Wang L, Schindler J, Thomas J A, et al.. Entrapment of polypyrrole chains between MoS2 layers via an in situ oxidative polymerization encapsulation reaction. Chemistry of Materials, 1995, 7(10): 1753–1755
https://doi.org/10.1021/cm00058a001
|
29 |
Tang H, Wang J, Yin H, et al.. Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Advanced Materials, 2015, 27(6): 1117–1123
https://doi.org/10.1002/adma.201404622
pmid: 25529000
|
30 |
Liu W, Xu S, Guan S, et al.. Confined synthesis of carbon nitride in a layered host matrix with unprecedented solid-state quantum yield and stability. Advanced Materials, 2018, 30(2): 1704376
https://doi.org/10.1002/adma.201704376
pmid: 29178148
|
31 |
Gao R, Yan D. Layered host-guest long-afterglow ultrathin nanosheets: high-efficiency phosphorescence energy transfer at 2D confined interface. Chemical Science, 2017, 8(1): 590–599
https://doi.org/10.1039/C6SC03515A
pmid: 28451206
|
32 |
Li B, Gu Z, Kurniawan N, et al.. Manganese-based layered double hydroxide nanoparticles as a T1-MRI contrast agent with ultrasensitive pH response and high relaxivity. Advanced Materials, 2017, 29(29): 1700373
https://doi.org/10.1002/adma.201700373
pmid: 28585312
|
33 |
Zhao Y, Liu J, Hu Y, et al.. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Advanced Materials, 2013, 25(4): 591–595
https://doi.org/10.1002/adma.201203578
pmid: 23081662
|
34 |
Si Y, Yu J, Tang X, et al.. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nature Communications, 2014, 5: 5802
https://doi.org/10.1038/ncomms6802
pmid: 25512095
|
35 |
Kim K H, Oh Y, Islam M F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nature Nanotechnology, 2012, 7(9): 562–566
https://doi.org/10.1038/nnano.2012.118
pmid: 22820743
|
36 |
Worsley M A, Kucheyev S O, Mason H E, et al.. Mechanically robust 3D graphene macroassembly with high surface area. Chemical Communications, 2012, 48(67): 8428–8430
https://doi.org/10.1039/c2cc33979j
pmid: 22797515
|
37 |
Tang Z, Shen S, Zhuang J, et al.. Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angewandte Chemie International Edition, 2010, 49(27): 4603–4607
https://doi.org/10.1002/anie.201000270
pmid: 20491102
|
38 |
Schiavon G, Zotti G, Comisso N, et al.. Ion exchange in the electrochemical switching of polypyrroles in acetonitrile by the electrochemical quartz crystal microbalance. Electrolyte incorporation by hydrogen bonding of anions to pyrrole. The Journal of Physical Chemistry, 1994, 98(18): 4861–4864
https://doi.org/10.1021/j100069a015
|
39 |
Cong H P, Ren X C, Wang P, et al.. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano, 2012, 6(3): 2693–2703
https://doi.org/10.1021/nn300082k
pmid: 22303866
|
40 |
Niu Z, Chen J, Hng H H, et al.. A leavening strategy to prepare reduced graphene oxide foams. Advanced Materials, 2012, 24(30): 4144–4150
https://doi.org/10.1002/adma.201200197
pmid: 22544807
|
41 |
Gui X, Wei J, Wang K, et al.. Carbon nanotube sponges. Advanced Materials, 2010, 22(5): 617–621
https://doi.org/10.1002/adma.200902986
pmid: 20217760
|
42 |
Lillo-Ródenas M A, Cazorla-Amorós D, Linares-Solano A. Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon, 2005, 43(8): 1758–1767
https://doi.org/10.1016/j.carbon.2005.02.023
|
43 |
Li S, Tian S, Feng Y, et al.. A comparative investigation on absorption performances of three expanded graphite-based complex materials for toluene. Journal of Hazardous Materials, 2010, 183(1‒3): 506–511
https://doi.org/10.1016/j.jhazmat.2010.07.052
pmid: 20724069
|
44 |
Du C, Yeh J, Pan N. High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology, 2005, 16(4): 350–353
https://doi.org/10.1088/0957-4484/16/4/003
|
45 |
Du C, Pan N. Supercapacitors using carbon nanotubes films by electrophoretic deposition. Journal of Power Sources, 2006, 160(2): 1487–1494
https://doi.org/10.1016/j.jpowsour.2006.02.092
|
46 |
Bao L, Li X. Towards textile energy storage from cotton T-shirts. Advanced Materials, 2012, 24(24): 3246–3252
https://doi.org/10.1002/adma.201200246
pmid: 22588714
|
47 |
Taberna P L, Simon P, Fauvarque J F. Electrochemical characteristics and impedance spectroscopy studies of carbon‒carbon supercapacitors. Journal of the Electrochemical Society, 2003, 150(3): A292–A300
https://doi.org/10.1149/1.1543948
|
48 |
Niu Z, Dong H, Zhu B, et al.. Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Advanced Materials, 2013, 25(7): 1058–1064
https://doi.org/10.1002/adma.201204003
pmid: 23255187
|
49 |
Sung J H, Kim S J, Lee K H. Fabrication of microcapacitors using conducting polymer microelectrodes. Journal of Power Sources, 2003, 124(1): 343–350
https://doi.org/10.1016/S0378-7753(03)00669-4
|
50 |
Sung J H, Kim S J, Lee K H. Fabrication of all-solid-state electrochemical microcapacitors. Journal of Power Sources, 2004, 133(2): 312–319
https://doi.org/10.1016/j.jpowsour.2004.02.003
|
51 |
Sung J H, Kim S J, Jeong S H, et al.. Flexible micro-supercapacitors. Journal of Power Sources, 2006, 162(2): 1467–1470
https://doi.org/10.1016/j.jpowsour.2006.07.073
|
52 |
Dubal D P, Lee S H, Kim J G, et al.. Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. Journal of Materials Chemistry, 2012, 22(7): 3044–3052
https://doi.org/10.1039/c2jm14470k
|
53 |
Xue J, Zhao Y, Cheng H, et al.. An all-cotton-derived, arbitrarily foldable, high-rate, electrochemical supercapacitor. Physical Chemistry Chemical Physics, 2013, 15(21): 8042–8045
https://doi.org/10.1039/c3cp51571k
pmid: 23629155
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|