Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2017, Vol. 11 Issue (4) : 385-394    https://doi.org/10.1007/s11706-017-0396-6
RESEARCH ARTICLE
Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1--xRuxO2 by the microemulsion method
Ramanathan SARASWATHY()
Department of Physics, Velammal Institute of Technology, Panchetti, Thiruvallur-601204, India
 Download: PDF(483 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Synthesis of nanostructured Ru-doped SnO2 was successfully carried out using the reverse microemulsion method. The phase purity and the crystallite size were analyzed by XRD. The surface morphology and the microstructure of synthesized nanoparticles were analyzed by SEM and TEM. The vibration mode of nanoparticles was investigated using FTIR and Raman studies. The electrochemical behavior of the Ru-doped SnO2 electrode was evaluated in a 0.1 mol/L Na2SO4 solution using cyclic voltammetry. The 5% Ru-doped SnO2 electrode exhibited a high specific capacitance of 535.6 F/g at a scan rate 20 mV/s, possessing good conductivity as well as the electro-cycling stability. The Ru-doped SnO2 composite shows excellent electrochemical properties, suggesting that this composite is a promising material for supercapacitors.

Keywords reverse microemulsion      tin oxide      nanomaterials      supercapacitor      electrochemical property     
Corresponding Author(s): Ramanathan SARASWATHY   
Online First Date: 14 November 2017    Issue Date: 29 November 2017
 Cite this article:   
Ramanathan SARASWATHY. Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1--xRuxO2 by the microemulsion method[J]. Front. Mater. Sci., 2017, 11(4): 385-394.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-017-0396-6
https://academic.hep.com.cn/foms/EN/Y2017/V11/I4/385
Fig.1  Experimental procedure for the synthesis of Ru-doped tin oxide nanoparticles.
Fig.2  DSC studies for as-prepared samples of SNR-0, SNR-2 and SNR-5.
Fig.3  (a) XRD patterns of SnO2 and Ru-doped SnO2 heat-treated at 500°C, with peaks marked corresponding to the tetrahedral structure of SnO2 (JCPDS No. 41-1445). (b) Peak shift shown in the graph.
Fig.4  XRD patterns of nanopowders heat-treated at 500°C and the Rietveld refined results: (a) SNR-0; (b) SNR-2.
SampleabcVolume/Å3Crystallite size/nm
ICDD4.73824.73823.187171.55?
SNR-04.73544.73543.187571.4785
SNR-24.73534.73533.187871.4838
SNR-54.74014.74013.188571.6458.2
Tab.1  Structural parameters of Ru: SnO2 nanoparticles
Fig.5  SEM images of the 500°C heat-treated samples at the same magnification: (a) SNR-0; (b) SNR-2; (c) SNR-5.(d) EDS spectrum for SNR-0 acquired from the region marked by the square in the insert.
ElementContent/mol.%
SNR-0SNR-2SNR-5
Sn16.4718.1617.53
O43.5340.7237.28
Ru01.021.16
Tab.2  Elemental analysis of Ru: SnO2 nanoparticles in molar percentage
Fig.6  (a)(b) Bright-field TEM images of Ru-doped SnO2 at two different magnifications, with the particle-size distribution in the insert. (c) High-resolution TEM image and (d) EDS spectrum of Ru-doped SnO2.
Fig.7  FTIR spectra of as-synthesized SNR-0, SNR-2 and SNR-5.
Fig.8  Raman spectra of as-synthesized SNR-0, SNR-2 and SNR-5.
Fig.9  Room-temperature CV curves of (a) SNR-0, (b) SNR-2, and (c) SNR-5 at different scan rates, with Ag/AgCl as the reference electrode, Pt as the counter electrode, and 0.1 mol/L Na2SO4 solution as the electrolyte. (d)Specific capacitance as a function of current density for all samples.
SampleCapacitance/(F·g−1)
20 mV/s60 mV/s100 mV/s
SNR-0268.6141.894.0
SNR-2257.4102.574.6
SNR-5535.6216.5156.5
Tab.3  Specific capacitance values of SNR-0, SNR-2 and SNR-5 at different scan rates
Fig.10  Plots of the maximum current (Imax) vs. the square root of the scan rate obtained from the CV curves for (a) SNR-0, (b)SNR-2 and (c)SNR-5. (d)Cycle life of SNR-0, SNR-2 and SNR-5 at the current density of 1 A/g, with the inset showing the final 10 cycles of SNR-5.
27 Chen Z W, Du J, Zhang H J, et al.Exploring the microstructural and electrical properties of SnO2 nanorods prepared by a widely applicable route. Acta Materialia, 2009, 57(15): 4632–4637 
https://doi.org/10.1016/j.actamat.2009.06.041
28 Chen Y J, Nie L, Xue X Y, et al.Linear ethanol sensing of SnO2 nanorods with extremely high sensitivity. Applied Physics Letters, 2006, 88(8): 083105 
https://doi.org/10.1063/1.2166695
29 Camacho-López M A, Galeana-Camacho J R, Esparza-García A, et al.Characterization of nanostructured SnO2 films deposited by reactive DC-magnetron sputtering. Superficies y Vacío, 2013, 26(3): 95–99
30 Trani F, Causà M, Ninno D, et al.Density functional study of oxygen vacancies at the SnO2 surface and subsurface sites. Physical Review B: Condensed Matter and Materials Physics, 2008, 77(24): 245410 
https://doi.org/10.1103/PhysRevB.77.245410
31 Zhu Z, Deka R C, Chutia A, et al.Enhanced gas-sensing behaviour of Ru-doped SnO2 surface: A periodic density functional approach. Journal of Physics and Chemistry of Solids, 2009, 70(9): 1248–1255 
https://doi.org/10.1016/j.jpcs.2009.07.012
32 McGuire K, Pan Z W, Wang Z L, et al.Raman studies of semiconducting oxide nanobelts. Journal of Nanoscience and Nanotechnology, 2002, 2(5): 499–502 
https://doi.org/10.1166/jnn.2002.129
33 Wu Q, Xu Y, Yao Z, et al.Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano, 2010, 4(4): 1963–1970 doi:10.1021/nn1000035
1 Burke A. Ultracapacitors: Why, how, and where is the technology. Journal of Power Sources, 2000, 91(1): 37–50 
https://doi.org/10.1016/S0378-7753(00)00485-7
34 Manivel P, Ramakrishnan S, Kothurkar N K, et al.Optical and electrochemical studies of polyaniline/SnO2 fibrous nanocomposites. Materials Research Bulletin, 2013, 48(2): 640–645 
https://doi.org/10.1016/j.materresbull.2012.11.033
35 Dai Y M, Tang S C, Peng J Q, et al.MnO2@SnO2 core–shell heterostructured nanorods for supercapacitors. Materials Letters, 2014, 130: 107–110 
https://doi.org/10.1016/j.matlet.2014.05.090
36 Li G, Wang Z, Zheng F, et al.ZnO@MoO3 core/shell nanocables: facile electrochemical synthesis and enhanced supercapacitor performances. Journal of Materials Chemistry, 2011, 21(12): 4217–4221
https://doi.org/10.1039/c0jm03500a
37 Saha S, Jana M, Khanra P, et al.Band gap modified boron doped NiO/Fe3O4 nanostructure as the positive electrode for high energy asymmetric supercapacitors. RSC Advances, 2016, 6(2): 1380–1387 
https://doi.org/10.1039/c5ra20928e
2 Hu C C, Chang K H, Lin M C, et al.Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Letters, 2006, 6(12): 2690–2695 
https://doi.org/10.1021/nl061576a
3 Kim J, Zhu K, Yan Y, et al.Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays. Nano Letters, 2010, 10(10): 4099–4104 
https://doi.org/10.1021/nl102203s
4 Li G, Wang Z, Zheng F L, et al.ZnO@MoO3 core/shell nanocables: Facile electrochemical synthesis and enhanced supercapacitor performances. Journal of Materials Chemistry, 2011, 21(12): 4217–4221 
https://doi.org/10.1039/c0jm03500a
5 Chen J, Xia X, Tu J, et al.Co3O4‒C core‒shell nanowire array as an advanced anode material for lithium ion batteries. Journal of Materials Chemistry, 2012, 22(30): 15056–15061 
https://doi.org/10.1039/c2jm31629c
6 Jeong Y U, Manthiram A. Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes. Journal of the Electrochemical Society, 2002, 149(11): A1419–A1422 
https://doi.org/10.1149/1.1511188
7 Wang H, Rogach A L. Hierarchical SnO2 nanostructures: Recent advances in design, synthesis, and applications. Chemistry of Materials, 2014, 26(1): 123–133 
https://doi.org/10.1021/cm4018248
8 Han X, Jin M, Xie S, et al.Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy {221} facets and enhanced gas-sensing properties. Angewandte Chemie International Edition, 2009, 48(48): 9180–9183
https://doi.org/10.1002/anie.200903926
9 El Moustafid T, Cachet H, Tribollet B, et al.Modified transparent SnO2 electrodes as efficient and stable cathodes for oxygen reduction. Electrochimica Acta, 2002, 47(8): 1209–1215 
https://doi.org/10.1016/S0013-4686(01)00845-3
10 Dai Y M, Tang S C, Peng J Q, et al.MnO2@SnO2 core‒shell heterostructured nanorods for supercapacitors. Materials Letters, 2014, 130: 107–110 
https://doi.org/10.1016/j.matlet.2014.05.090
11 Manivel P, Ramakrishnan S, Kothurkar N K, et al.Optical and electrochemical studies of polyaniline/SnO2 fibrous nanocomposites. Materials Research Bulletin, 2013, 48(2): 640–645 
https://doi.org/10.1016/j.materresbull.2012.11.033
12 He C, Xiao Y, Dong H, et al.Mosaic-structured SnO2@C porous microspheres for high-performance supercapacitor electrode materials. Electrochimica Acta, 2014, 142: 157–166 
https://doi.org/10.1016/j.electacta.2014.07.077
13 Egdell R G, Goodenough J B, Hamnett A, et al.Electrochemistry of ruthenates Part 1. — Oxygen reduction on pyrochlore ruthenates. Journal of the Chemical Society, Faraday Transactions, 1983, 79: 893–912 
https://doi.org/10.1039/f19837900893
14 Horowitz H S, Longo J M, Horowitz H H, et al. The synthesis and electrocatalytic properties of nonstoichiometric ruthenate pyrochlores. In: Grasselli R K, Brazdil J F, eds. ACS Symposium Series (Volume 279): Solid State Chemistry in Catalysis. Washington, DC: ACS, 1985, 143–163
15 Lim J H, Choi D J, Kim H K, et al.Thin film supercapacitors using a sputtered RuO2 electrode. Journal of the Electrochemical Society, 2001, 148(3): A275–A278 
https://doi.org/10.1149/1.1350666
16 Raghuveer V, Kumar K, Viswanathan B. Nanocrystalline lead ruthenium pyrochlore as oxygen reduction electrode. Indian Journal of Engineering and Materials Sciences, 2002, 9(2): 137–140
17 Ramamurthy P, Secco E A. Studies on metal hydroxy compounds. XIII. Thermal analyses and decomposition kinetics of hydroxystannates of bivalent metals. Canadian Journal of Chemistry, 1971, 49(17): 2813–2816 
https://doi.org/10.1139/v71-468
18 Venugopal B, Nandan B, Ayyachamy A, et al.Influence of manganese ions in the band gap of tin oxide nanoparticles: structure, microstructure and optical studies. RSC Advances, 2014, 4(12): 6141–6150 
https://doi.org/10.1039/c3ra46378h
19 Tian Z M, Yuan S L, He J H, et al.Structure and magnetic properties in Mn doped SnO2 nanoparticles synthesized by chemical co-precipitation method. Journal of Alloys and Compounds, 2008, 466(1‒2): 26–30 
https://doi.org/10.1016/j.jallcom.2007.11.054
20 Kalantar-zadeh K, Ou J Z, Daeneke T, et al.Two dimensional and layered transition metal oxides. Applied Materials Today, 2016, 5: 73–89 
https://doi.org/10.1016/j.apmt.2016.09.012
21 Nandan B, Venugopal B, Amirthapandian S, et al.Effect of Pd ion doping in the band gap of SnO2 nanoparticles: structural and optical studies. Journal of Nanoparticle Research, 1999, 2013(15): 1–11
22 Gu F, Wang S F, Song C F, et al.Synthesis and luminescence properties of SnO2 nanoparticles. Chemical Physics Letters, 2003, 372(3‒4): 451–454 
https://doi.org/10.1016/S0009-2614(03)00440-8
23 Das S, Kar S, Chaudhuri S. Optical properties of SnO2 nanoparticles and nanorods synthesized by solvothermal process. Journal of Applied Physics, 2006, 99(11): 114303 
https://doi.org/10.1063/1.2200449
24 Katiyar R S, Dawson P, Hargreave M M, et al.Dynamics of the rutile structure. III. Lattice dynamics, infrared and Raman spectra of SnO2. Journal of Physics Part C: Solid State Physics, 1971, 4(15): 2421–2431
25 Chen W, Ghosh D, Chen S. Large-scale electrochemical synthesis of SnO2 nanoparticles. Journal of Materials Science, 2008, 43(15): 5291–5299 
https://doi.org/10.1007/s10853-008-2792-x
26 Xiong C S, Xiong Y H, Zhu H, et al.Investigation of Raman spectrum for nano-SnO2. Science in China Series A: Mathematics Physics Astronomy, 1997, 40(11): 1222–1227
[1] Dandan HAN, Jinhe WEI, Shanshan WANG, Yifan PAN, Junli XUE, Yen WEI. Feather-like NiCo2O4 self-assemble from porous nanowires as binder-free electrodes for low charge transfer resistance[J]. Front. Mater. Sci., 2020, 14(4): 450-458.
[2] Huan-Yan XU, Dan LU, Xu HAN. Graphene-induced enhanced anticorrosion performance of waterborne epoxy resin coating[J]. Front. Mater. Sci., 2020, 14(2): 211-220.
[3] Meenaketan SETHI, U. Sandhya SHENOY, Selvakumar MUTHU, D. Krishna BHAT. Facile solvothermal synthesis of NiFe2O4 nanoparticles for high-performance supercapacitor applications[J]. Front. Mater. Sci., 2020, 14(2): 120-132.
[4] Danhua ZHU, Qianjie ZHOU, Aiqin LIANG, Weiqiang ZHOU, Yanan CHANG, Danqin LI, Jing WU, Guo YE, Jingkun XU, Yong REN. Two-step preparation of carbon nanotubes/RuO2/polyindole ternary nanocomposites and their application as high-performance supercapacitors[J]. Front. Mater. Sci., 2020, 14(2): 109-119.
[5] Chengzhi LUO, Guanghui LIU, Min ZHANG. Electric-field-induced microstructure modulation of carbon nanotubes for high-performance supercapacitors[J]. Front. Mater. Sci., 2019, 13(3): 270-276.
[6] Bin CAI, Changxiang SHAO, Liangti QU, Yuning MENG, Lin JIN. Preparation of sulfur-doped graphene fibers and their application in flexible fibriform micro-supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 145-155.
[7] Meng LIU, Lei LIU, Yifeng YU, Haijun LV, Aibing CHEN, Senlin HOU. Synthesis of nitrogen-doped carbon spheres using the modified Stöber method for supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 156-164.
[8] Ge JU, Muhammad Arif KHAN, Huiwen ZHENG, Zhongxun AN, Mingxia WU, Hongbin ZHAO, Jiaqiang XU, Lei ZHANG, Salma BILAL, Jiujun ZHANG. Honeycomb-like polyaniline for flexible and folding all-solid-state supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 133-144.
[9] Maria COROŞ, Florina POGĂCEAN, Lidia MĂGERUŞAN, Crina SOCACI, Stela PRUNEANU. A brief overview on synthesis and applications of graphene and graphene-based nanomaterials[J]. Front. Mater. Sci., 2019, 13(1): 23-32.
[10] Honghong ZOU, Lei WANG, Chenghui ZENG, Xiaolei GAO, Qingqing WANG, Shengliang ZHONG. Rare-earth coordination polymer micro/nanomaterials: Preparation, properties and applications[J]. Front. Mater. Sci., 2018, 12(4): 327-347.
[11] Haiyan LI, Yucheng ZHAO, Chang-An WANG. MoS2/CoS2 composites composed of CoS2 octahedrons and MoS2 nano-flowers for supercapacitor electrode materials[J]. Front. Mater. Sci., 2018, 12(4): 354-360.
[12] Wang YANG, Wu YANG, Lina KONG, Shuanlong DI, Xiujuan QIN. Nitrogen--oxygen co-doped corrugation-like porous carbon for high performance supercapacitor[J]. Front. Mater. Sci., 2018, 12(3): 283-291.
[13] Ke ZHAN, Tong YIN, Yuan XUE, Yinwen TAN, Yihao ZHOU, Ya YAN, Bin ZHAO. A two-step approach to synthesis of Co(OH)2/γ-NiOOH/reduced graphene oxide nanocomposite for high performance supercapacitors[J]. Front. Mater. Sci., 2018, 12(3): 273-282.
[14] Jiangli XUE, Maosong MO, Zhuming LIU, Dapeng YE, Zhihua CHENG, Tong XU, Liangti QU. A general synthesis strategy for the multifunctional 3D polypyrrole foam of thin 2D nanosheets[J]. Front. Mater. Sci., 2018, 12(2): 105-117.
[15] Jagpreet SINGH, Aditi RATHI, Mohit RAWAT, Manoj GUPTA. Graphene: from synthesis to engineering to biosensor applications[J]. Front. Mater. Sci., 2018, 12(1): 1-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed