Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2018, Vol. 12 Issue (4) : 327-347    https://doi.org/10.1007/s11706-018-0444-x
REVIEW ARTICLE
Rare-earth coordination polymer micro/nanomaterials: Preparation, properties and applications
Honghong ZOU, Lei WANG, Chenghui ZENG, Xiaolei GAO, Qingqing WANG, Shengliang ZHONG()
Research Center for Ultrafine Powder Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
 Download: PDF(928 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Rare-earth coordination polymers (RECPs), as a family member of coordination polymers (CPs), have been prepared and studied widely. Thanks to their characteristic properties and functions, RECPs have already been used in various application fields ranging from catalysis to drug delivery. In recent years, CPs with tunable morphologies and sizes have drawn increasing interest and attractive attention. This review presents the recent research progress of RECP micro/nanomaterials, and emphasizes the preparation, properties and broad applications of these fascinating materials.

Keywords coordination polymer      metal--organic framework      rare earth      nanomaterials     
Corresponding Author(s): Shengliang ZHONG   
Online First Date: 30 November 2018    Issue Date: 10 December 2018
 Cite this article:   
Honghong ZOU,Lei WANG,Chenghui ZENG, et al. Rare-earth coordination polymer micro/nanomaterials: Preparation, properties and applications[J]. Front. Mater. Sci., 2018, 12(4): 327-347.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-018-0444-x
https://academic.hep.com.cn/foms/EN/Y2018/V12/I4/327
RECP Bridging ligand Morphology Preparation method Application Refs.
Tb-CP DSCP nanoparticles precipitation drug delivery [24]
Tb-BTB ICP H3BTB hollow microspheres solvothermal white-light emission [28]
(RE)5·(C4H7N2O3)·(C2H4O2)7·4(C2H6O2) (RE= Y: Yb, Er) asparagine nanospheres solvothermal up-conversion emission [29]
Ce-CP H4BTC 3D flower-like solvothermal as templating [30]
Ce-CP 2,5-H2PDA nanosphere solvothermal as templating [31]
Tb(HBTC)(H2O)5 H4BTC straw-like sheaves microwave-assisted fluorescent probes [32]
La(C7H2NO4)·2[Eu(C7H2NO4)3]·5H2O 2,5-H2PDA core–shell particles microwave luminescence properties [33]
Eu-ICP PDA submicrospheres microwave strong red emission [34]
RECP (RE= La, Gd, Y) PDA submicrospheres microwave as templating [35]
Fe3O4@Tb-BTC 1,3,5-BTC core–shell nanospheres a layer by layer assembly technique magnetic characteristics and fluorescent properties [36]
Au@Eu-CP DMSA core–shell nanoparticles template synthesis photoluminescence and photothermal properties [37]
Gd-CP@Eu-CP allantoin core–shell nanospheres template synthesis up/down-conversion luminescence [38]
La(1,3,5-BTC)(H2O)6 H3BTC broccoli-like, urchin-like, sheaf-like and fan-like architectures direct precipitation white-light emission [39]
Ce(1,3-BDC)1.5·6H2O, Ce(1,4-BDC)1.5·2H2O 1,3-BDC, 1,4-BDC nanowires, microflowers direct precipitation as templating [40]
Ce-CPs 1,2-BDC, 1,3-BDC, 1,4-BDC nanoparticles, nanorods, microflowers direct precipitation as templating [41]
Gd(BDC)1.5(H2O)2, [Gd(1,2,4-BTC)(H2O)3]·H2O 1,4-BDC, 1,2,4-BTC nanorods, nanoplates microemulsion luminescent, MRI [42]
[Ce(1,5-NDS)1.5(H2O)5]n 1,5-NDS microrod nanoparticle hydrothermal and sonochemical approaches fluorescent sensor [43]
[La(IN)3(H2O)2] HIN nanoparticles sonochemical method fluorescence, sensing and photocatalytic property [44]
[Gd2(BHC)(H2O)6] BHC nanoparticles solvothermal, microemulsion MRI, optical imaging [45]
Ce-CP 2,5-H2PDA hierarchical superstructures solvothermal as templating [46]
Y-CP: Yb3+, Er3+ allantoin hierarchical micro/nanostructures hydrothermal up-conversion luminescence [47]
Eu-TFA CPs H2TFA flower-like hydrothermal luminescence [48]
Ce(1,3,5-BTC)(H2O)6 1,3,5-BTC hierarchically nanostructured precipitation [49]
Tb(1,3,5-BTC)(H2O)·3H2O 1,3,5-BTC nanobelts precipitation luminescence [50]
[Tb(1,3,5-BTC)]n 1,3,5-BTC nanorods and nanoparticles ultrasound-vapor phase diffusion technique luminescence sensors [51]
In-BTC⊃Ln (Ln= Eu3+, Tb3+, Dy3+ or Sm3+) 1,3,5-BTC thin films post-synthetic modification luminescence [52]
HNA-Si-RE (RE= Eu and Tb) 2-HNA hybrid materials sol–gel technology luminescence [53]
[Tb(1,3,5-BTC)(H2O)6]n 1,3,5-BTC nanowires ultrasonic-assisted luminescent probe [54]
SSA/AMP-Tb SSA, AMP nanoparticles chemical modifications fluorescent sensor [55]
[KLn(ox)(SO4)(H2O)] (Ln= Eu, Tb, Dy) ox tracery-like solvothermal luminescent probe [56]
Eu-CPs phthalicacid, isophthalic acid, terephthalic acid belt-like, horn-like superstructures solvothermal photoluminescence [57]
Y0.95Eu0.05-BTC MOFs BTC nanobelts, urchin-like hierarchical wet chemistry method luminescent [58]
Ln(BTC)(H2O)6 (Ln= La, Ce, Eu, Gd, Dy) 1,3,5-BTC nanorods precipitation photoluminescence [59]
CPGs (TbL and EuL) L coiled nanofiber self-assembly yellow and white light emission [60]
silica@CP containing Gd3+, Eu3+ or Y3+ H2IPA core–shell microspheres solvothermal as templating [61]
Ce-BDC BDC nanoparticles solvothermal catalysts [62]
[H2N(CH3)2][Tb(CPPA)2(H2O)2] H2CPPA nanosheets solvothermal and ion-exchanged fluorescent probe and catalysts [63]
Tab.1  Summary of RECP micro/nanomaterials [24,2863]
Fig.1  SEM images of (a) block-like particles of [Gd2(BHC)(H2O)6], (b) hierarchical superstructure of Ce-CP, (c) hollow microsphere of Tb-BTBICP, (d) 3D flower-like Ce-CP, (e) hierarchical micro/nanostructure of Y-CP: Yb3+, Er3+, and (f) flower-like Eu-CP. ((a) Reproduced from Ref. [45] with permission of Wiley; (b)(c)(d)(e) Reproduced from Refs. [28,30,4647] with permission of Royal Society of Chemistry; (f) Reproduced from Ref. [48] with permission of Springer-Verlag)
Fig.2  (a) Schematic illustration of the formation of the Ce-CP hierarchical superstructure by a solvothermal process. SEM images of the products obtained at 160°C with different times: (b) 1 h; (c) 80 min; (d) 1.5 h; (e) 24 h. (Reproduced from Ref. [46] with permission of Royal Society of Chemistry)
Fig.3  SEM or TEM images of RECPs synthesized by the microwave method: (a) [Gd2(BHC)(H2O)8](H2O)2 nanorods; (b) straw-sheaf-like Tb-CPs; (c) Eu-ICP submicrospheres; (d) La-CP submicrospheres; (e) Gd-CP submicrospheres; (f) Y-CP submicrospheres. ((a) Reproduced from Ref. [45] with permission of Wiley; (b) Reproduced from Ref. [32] with permission of Royal Society of Chemistry; (c) Reproduced from Ref. [34] with permission of Elsevier; (d)(e)(f) Reproduced from Ref. [35] with permission of American Chemical Society)
Fig.4  SEM images of Ce(1,3,5-BTC)(H2O)6 with different morphologies of (a) straw-sheaf-like, (b) flower-like, (c) wheatear-like, (d) sheaf-like, (e) straw-like, (f) bundle-like and (g) urchin-like architectures as well as (h) nanorods. (Reproduced from Ref. [49] with permission of American Chemical Society)
Fig.5  (a) Schematic illustration of the fabrication process. (b) SEM and (c)(d) TEM images of Fe3O4@Tb-BTC nanospheres. (Reproduced from Ref. [36] with permission of Royal Society of Chemistry)
Fig.6  SEM images: Gd(BDC)1.5(H2O)2 nanorods synthesized with (a) w = 5 and (b) w = 10; [Gd(1,2,4-BTC)(H2O)3]·H2O nanoplates synthesized with (c) w = 15. (Reproduced from Ref. [42] with permission of American Chemical Society)
Fig.7  SEM images of [Ce(1,5-NDS)1.5(H2O)5]n prepared by the ultrasonic method in (a) 15 min and (b) 60 min. (Reproduced from Ref. [43] with permission of Elsevier)
Temperature/°C Reaction time/min Sonication input power/W Average diameter/nm Morphology
60 15 50 650 rod
60 15 70 500 rod
60 60 50 185 sphere
60 60 70 78 sphere
Tab.2  The effect of temperature, reaction time and sonication power on the size and the morphology of particles (Reproduced from Ref. [43] with permission of Elsevier)
Fig.8  (a) PL spectra of Tb(HBTC)(H2O)5 in PbCl2 aqueous solution at different concentrations (excited at 302 nm). The inset shows the luminescence change after the addition of Pb2+ ions in the Tb(HBTC)(H2O)5 suspension under UV light. (b) Compari-son of the 5D47F5 luminescence intensity of Tb(HBTC)(H2O)5 in different metal ion aqueous solutions. The inset shows the SEM image of the as-prepared typical straw-sheaf-like product. (Reproduced from Ref. [32] with permission of Royal Society of Chemistry)
Fig.9  (a) Perspective view of the packing along the c axis of Tb(1,3,5-BTC)(H2O)·3H2O. (b) Emission spectra of Tb(1,3,5-BTC)(H2O)·3H2O:Eu (x = 0.1–10 mol.%) under the 304 nm excitation. (c) Photographs for the luminescent MOF Tb(1,3,5-BTC)(H2O)·3H2O:Eu (x = 0 for A, 0.1% for B, 0.3% for C, 0.5% for D, 5% for E, and 10% for F) under the excitation of a 254 nm UV lamp. (d) CIE chromaticity diagram for Tb(1,3,5-BTC)(H2O)·3H2O:Eu. (Reproduced from Ref. [50] with permission of Royal Society of Chemistry)
Fig.10  (a) Illustration for the formation process of Tb-BTB microspheres. (b) CIE chromaticity diagram for the Tb-BTB-1: xEu3+ (x = 0 for A, 0.05% for B, 0.1% for C, 0.3% for D, 0.5% for E, 5% for F, and 10% for G) hollow spheres. The right side shows the corresponding fluorescence photograph under an excitation wavelength of 316 nm. (Reproduced from Ref. [28] with permission of Royal Society of Chemistry)
Fig.11  (a) Schematic showing the self-assembly of L though H-bonding and p–p stacking interactions and its coordination to Ln(III) forming luminescent CPGs. (b) Photographs of an illuminating UV LED (i), the same LED coated with TbEu2 gel under day light (ii) and LED showing bright white light after switching on the LED (iii). (Reproduced from Ref. [60] with permission of Royal Society of Chemistry)
Fig.12  Schematic illustration for the formulation of a NCP containing Pt-based anticancer drugs. (Reproduced from Ref. [24] with permission of American Chemical Society)
Fig.13  (a) Schematic representation of the preparation of silica@RE2O3 core–shell and hollow RE2O3 microspheres (RE= Gd3+, Eu3+, Y3+) from silica@CP core–shell microspheres. TEM images of (b) silica@CP core–shell microspheres, (c) silica@Gd2O3 core–shell microspheres and (d) hollow Gd2O3 microspheres. TEM and SEM (inset) images of hollow (e) Eu2O3 and (f) Y2O3 microspheres. (Reproduced from Ref. [61] with permission of Wiley)
Fig.14  (a) Schematic representation of the preparation of multi-shelled CeO2 hollow nanospheres through a one-step calcination Ce-CP precursor method. (b) TEM photos of other heavy RE oxides multi-shelled spheres. (c) The evolution of ceria with multi-shelled hollow structures at different time intervals by track of calcination process between 25°C and 600°C. (Reproduced from Ref. [31] with permission of Royal Society of Chemistry)
1 Zhao D, Timmons D J, Yuan D, et al.. Tuning the topology and functionality of metal–organic frameworks by ligand design. Accounts of Chemical Research, 2011, 44(2): 123–133
https://doi.org/10.1021/ar100112y pmid: 21126015
2 Spokoyny A M, Kim D, Sumrein A, et al.. Infinite coordination polymer nano- and microparticle structures. Chemical Society Reviews, 2009, 38(5): 1218–1227
https://doi.org/10.1039/b807085g pmid: 19384433
3 Uemura T, Yanai N, Kitagawa S. Polymerization reactions in porous coordination polymers. Chemical Society Reviews, 2009, 38(5): 1228–1236
https://doi.org/10.1039/b802583p pmid: 19384434
4 Yang Q, Xu Q, Jiang H L. Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chemical Society Reviews, 2017, 46(15): 4774–4808
https://doi.org/10.1039/C6CS00724D pmid: 28621344
5 Qiu S, Zhu G. Molecular engineering for synthesizing novel structures of metal–organic frameworks with multifunctional properties. Coordination Chemistry Reviews, 2009, 253(23–24): 2891–2911
https://doi.org/10.1016/j.ccr.2009.07.020
6 Lin W, Rieter W J, Taylor K M L. Modular synthesis of functional nanoscale coordination polymers. Angewandte Chemie International Edition, 2009, 48(4): 650–658
https://doi.org/10.1002/anie.200803387 pmid: 19065692
7 Jin L N, Liu Q, Sun W Y. An introduction to synthesis and application of nanoscale metal-carboxylate coordination polymers. CrystEngComm, 2014, 16(19): 3816–3828
https://doi.org/10.1039/c3ce41962b
8 Masoomi M Y, Morsali A. Morphological study and potential applications of nano metal–organic coordination polymers. RSC Advances, 2013, 3(42): 19191–19218
https://doi.org/10.1039/c3ra43346c
9 Wen J, Wilkes G L. Organic/inorganic hybrid network materials by the sol–gel approach. Chemistry of Materials, 1996, 8(8): 1667–1681
https://doi.org/10.1021/cm9601143
10 Zou H, Wu S, Shen J. Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chemical Reviews, 2008, 108(9): 3893–3957
https://doi.org/10.1021/cr068035q pmid: 18720998
11 Binnemans K. Lanthanide-based luminescent hybrid materials. Chemical Reviews, 2009, 109(9): 4283–4374
https://doi.org/10.1021/cr8003983 pmid: 19650663
12 Freeman A J, Watson R E. Theoretical investigation of some magnetic and spectroscopic properties of rare-earth ions. Physical Review, 1962, 127(6): 2058–2075
https://doi.org/10.1103/PhysRev.127.2058
13 Bünzli J C G. Lanthanide luminescence for biomedical analyses and imaging. Chemical Reviews, 2010, 110(5): 2729–2755
https://doi.org/10.1021/cr900362e pmid: 20151630
14 Bünzli J C G. Benefiting from the unique properties of lanthanide ions. Accounts of Chemical Research, 2006, 39(1): 53–61
https://doi.org/10.1021/ar0400894 pmid: 16411740
15 Wang X, Li Y. Rare-earth-compound nanowires, nanotubes, and fullerene-like nanoparticles: synthesis, characterization, and properties. Chemistry, 2003, 9(22): 5627–5635
https://doi.org/10.1002/chem.200304785 pmid: 14639646
16 Roduner E. Size matters: why nanomaterials are different. Chemical Society Reviews, 2006, 35(7): 583–592
https://doi.org/10.1039/b502142c pmid: 16791330
17 Albanese A, Tang P S, Chan W C W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual Review of Biomedical Engineering, 2012, 14(1): 1–16
https://doi.org/10.1146/annurev-bioeng-071811-150124 pmid: 22524388
18 Yan C H, Yan Z G, Du Y P, et al.. Controlled synthesis and properties of rare earth nanomaterials. Handbook on the Physics and Chemistry of Rare Earths, 2011, 41: 275–472
https://doi.org/10.1016/B978-0-444-53590-0.00004-2
19 Tian Y, Chen B, Hua R, et al.. Synthesis and characterization of novel red emitting nanocrystal Gd6WO12: Eu3+ phosphors. Physica B: Condensed Matter, 2009, 404(20): 3598–3601
https://doi.org/10.1016/j.physb.2009.06.007
20 Zhang X, Yang P, Wang D, et al.. La(OH)3:Ln3+ and La2O3:Ln3+ (Ln= Yb/Er, Yb/Tm, Yb/Ho) microrods: synthesis and up-conversion luminescence properties. Crystal Growth & Design, 2012, 12(1): 306–312
https://doi.org/10.1021/cg201091u
21 Sun L D, Wang Y F, Yan C H. Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra. Accounts of Chemical Research, 2014, 47(4): 1001–1009
https://doi.org/10.1021/ar400218t pmid: 24422455
22 Rieter W J, Taylor K M L, Lin W. Surface modification and functionalization of nanoscale metal–organic frameworks for controlled release and luminescence sensing. Journal of the American Chemical Society, 2007, 129(32): 9852–9853
https://doi.org/10.1021/ja073506r pmid: 17645339
23 Taylor K M L, Rieter W J, Lin W. Manganese-based nanoscale metal–organic frameworks for magnetic resonance imaging. Journal of the American Chemical Society, 2008, 130(44): 14358–14359
https://doi.org/10.1021/ja803777x pmid: 18844356
24 Rieter W J, Pott K M, Taylor K M L, et al.. Nanoscale coordination polymers for platinum-based anticancer drug delivery. Journal of the American Chemical Society, 2008, 130(35): 11584–11585
https://doi.org/10.1021/ja803383k pmid: 18686947
25 Daiguebonne C, Kerbellec N, Guillou O, et al.. Structural and luminescent properties of micro- and nanosized particles of lanthanide terephthalate coordination polymers. Inorganic Chemistry, 2008, 47(9): 3700–3708
https://doi.org/10.1021/ic702325m pmid: 18366158
26 Allendorf M D, Bauer C A, Bhakta R K, et al.. Luminescent metal–organic frameworks. Chemical Society Reviews, 2009, 38(5): 1330–1352
https://doi.org/10.1039/b802352m pmid: 19384441
27 Horrocks W D, Sudnick D R. Lanthanide ion luminescence probes of the structure of biological macromolecules. Accounts of Chemical Research, 1981, 14(12): 384–392
https://doi.org/10.1021/ar00072a004
28 Zhong S L, Xu R, Zhang L F, et al.. Terbium-based infinite coordination polymer hollow microspheres: preparation and white-light emission. Journal of Materials Chemistry, 2011, 21(41): 16574–16580
https://doi.org/10.1039/c1jm12609a
29 Zhong S, Ji Y, Xie Q, et al.. Coordination polymer nanospheres: Preparation, upconversion properties and cytotoxicity study. Materials Letters, 2013, 102–103: 19–21
https://doi.org/10.1016/j.matlet.2013.03.095
30 Zhong S, Wang M, Wang L, et al.. Preparation of 3D cerium-based coordination polymer microstructures and their conversion to ceria. CrystEngComm, 2014, 16(2): 231–236
https://doi.org/10.1039/C3CE41996G
31 Liao Y, Li Y, Wang L, et al.. Multi-shelled ceria hollow spheres with a tunable shell number and thickness and their superior catalytic activity. Dalton Transactions, 2017, 46(5): 1634–1644
https://doi.org/10.1039/C6DT04402F pmid: 28098309
32 Shi M, Zeng C, Wang L, et al.. Straw-sheaf-like terbium-based coordination polymer architectures: microwave-assisted synthe-sis and their application as selective luminescent probes for heavy metal ions. New Journal of Chemistry, 2015, 39(4): 2973–2979
https://doi.org/10.1039/C4NJ02138J
33 Huang S, Xu H, Wang M, et al.. Rapid microwave synthesis and photoluminescence properties of rare earth-based coordination polymer core–shell particles. Optical Materials, 2016, 62: 538–542
https://doi.org/10.1016/j.optmat.2016.11.023
34 Zhao D, Wang L, Li Y, et al.. Uniform europium-based infinite coordination polymer submicrospheres: Fast microwave synthe-sis and characterization. Inorganic Chemistry Communications, 2012, 20: 97–100
https://doi.org/10.1016/j.inoche.2012.02.026
35 Zhong S, Jing H, Li Y, et al.. Coordination polymer submicrospheres: fast microwave synthesis and their conversion under different atmospheres. Inorganic Chemistry, 2014, 53(16): 8278–8286
https://doi.org/10.1021/ic5005769 pmid: 25083590
36 Qian J J, Qiu L G, Wang Y M, et al.. Fabrication of magnetically separable fluorescent terbium-based MOF nanospheres for highly selective trace-level detection of TNT. Dalton Transactions, 2014, 43(10): 3978–3983
https://doi.org/10.1039/c3dt52777h pmid: 24452313
37 Xiao C, Xu H, Zhong S. Au@Eu-based coordination polymers core–shell nanoparticles: Photoluminescence and photothermal properties. Materials Letters, 2018, 216: 106–109
https://doi.org/10.1016/j.matlet.2018.01.003
38 Li B, Xu H, Xiao C, et al.. Coordination polymer core/shell structures: Preparation and up/down-conversion luminescence. Journal of Colloid and Interface Science, 2016, 479: 15–19
https://doi.org/10.1016/j.jcis.2016.06.038 pmid: 27344485
39 Liu K, You H, Zheng Y, et al.. Room-temperature synthesis of multi-morphological coordination polymer and tunable white-light emission. Crystal Growth & Design, 2010, 10(1): 16–19
https://doi.org/10.1021/cg900990w
40 Zheng Y, Liu K, Qiao H, et al.. Facile synthesis and catalytic properties of CeO2 with tunable morphologies from thermal transformation of cerium benzendicarboxylate complexes. Cryst-EngComm, 2011, 13(6): 1786–1788
https://doi.org/10.1039/c0ce00906g
41 Wang L, Zou H, Li Y, et al.. Cerium-based coordination polymers micro/nanostructures: Room temperature synthesis and their thermolysis to ceria. Materials and Manufacturing Processes, 2017, 32(5): 484–488
https://doi.org/10.1080/10426914.2016.1232813
42 Rieter W J, Taylor K M L, An H, et al.. Nanoscale metal–organic frameworks as potential multimodal contrast enhancing agents. Journal of the American Chemical Society, 2006, 128(28): 9024–9025
https://doi.org/10.1021/ja0627444 pmid: 16834362
43 Geranmayeh S, Mohammadnejad M, Mohammadi S. Sonochemical synthesis and characterization of a new nano Ce(III) coordination supramolecular compound; highly sensitive direct fluorescent sensor for Cu2+. Ultrasonics Sonochemistry, 2018, 40(Pt A): 453–459
https://doi.org/10.1016/j.ultsonch.2017.07.038 pmid: 28946445
44 Etaiw S E H, Marie H. Ultrasonic synthesis of 1D-Zn(II) and La(III) supramolecular coordination polymers nanoparticles, fluorescence, sensing and photocatalytic property. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364: 478–491
https://doi.org/10.1016/j.jphotochem.2018.06.032
45 Taylor K M L, Jin A, Lin W. Surfactant-assisted synthesis of nanoscale gadolinium metal–organic frameworks for potential multimodal imaging. Angewandte Chemie International Edition, 2008, 47(40): 7722–7725
https://doi.org/10.1002/anie.200802911 pmid: 18767098
46 Zhao Y X, Nie Z W, Shi M M, et al.. Cerium-based porous coordination polymers with hierarchical superstructures: fabrication, formation mechanism and their thermal conversion to hierarchical CeO2. Inorganic Chemistry Frontiers, 2015, 2(6): 567–575
https://doi.org/10.1039/C5QI00016E
47 Li S S, Ji Y H, Zhang S Q, et al.. Fabrication of Yb3+/Er3+ co-doped yttrium-based coordination polymer hierarchical micro/nanostructures: upconversion luminescence properties and thermal conversion to the corresponding oxides. CrystEngComm, 2016, 18(36): 6809–6816
https://doi.org/10.1039/C6CE01349J
48 Chen W, Li S, Zeng C H, et al.. Eu-based coordination polymers micro-flowers: preparation and luminescence properties. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27(2): 598–604
https://doi.org/10.1007/s10904-017-0505-0
49 Liu K, You H, Jia G, et al.. Hierarchically nanostructured coordination polymer: facile and rapid fabrication and tunable morphologies. Crystal Growth & Design, 2010, 10(2): 790–797
https://doi.org/10.1021/cg901170j
50 Liu K, You H, Zheng Y, et al.. Facile and rapid fabrication of metal–organic framework nanobelts and color-tunable photoluminescence properties. Journal of Materials Chemistry, 2010, 20(16): 3272–3279
https://doi.org/10.1039/b927465k
51 Xiao J D, Qiu L G, Ke F, et al.. Rapid synthesis of nanoscale terbium-based metal–organic frameworks by a combined ultrasound-vapour phase diffusion method for highly selective sensing of picric acid. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(31): 8745–8752
https://doi.org/10.1039/c3ta11517h
52 Dou Z, Yu J, Xu H, et al.. Preparation and thiols sensing of luminescent metal–organic framework films functionalized with lanthanide ions. Microporous and Mesoporous Materials, 2013, 179: 198–204
https://doi.org/10.1016/j.micromeso.2013.06.008
53 Yan B, Qiao X F. Rare-earth/inorganic/organic polymeric hybrid materials: molecular assembly, regular microstructure and photoluminescence. The Journal of Physical Chemistry B, 2007, 111(43): 12362–12374
https://doi.org/10.1021/jp073531j pmid: 17924687
54 Hu S M, Niu H L, Qiu L G, et al.. Facile synthesis of highly luminescent nanowires of a terbium-based metal–organic framework by an ultrasonic-assisted method and their application as a luminescent probe for selective sensing of organoamines. Inorganic Chemistry Communications, 2012, 17: 147–150
https://doi.org/10.1016/j.inoche.2011.12.037
55 Huang P, Wu F, Mao L. Target-triggered switching on and off the luminescence of lanthanide coordination polymer nanoparticles for selective and sensitive sensing of copper ions in rat brain. Analytical Chemistry, 2015, 87(13): 6834–6841
https://doi.org/10.1021/acs.analchem.5b01155 pmid: 26027648
56 Li Q, Yuan Z, Qian J, et al.. Chemical stability and tunable luminescence of Ln(III)–K(I) coordination polymers featuring a tracery-like architecture. RSC Advances, 2015, 5(61): 49110–49114
https://doi.org/10.1039/C5RA07602A
57 Zhong S, Bai L, Zhao D, et al.. Europium(III) coordination polymers micro/nanostructures: A ligand structure effect. Materials Letters, 2013, 96: 125–127
https://doi.org/10.1016/j.matlet.2013.01.035
58 Zheng Y, Sun X, Su H, et al.. Phenanthroline modulated self-assembly of nano/micro-scaled metal–organic frameworks. Inorganic Chemistry Communications, 2015, 60: 119–121
https://doi.org/10.1016/j.inoche.2015.07.017
59 Wang F, Deng K, Wu G, et al.. Facile and large-scale syntheses of nanocrystal rare earth metal–organic frameworks at room temperature and their photoluminescence properties. Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22(4): 680–685
https://doi.org/10.1007/s10904-011-9498-2
60 Sutar P, Suresh V M, Maji T K. Tunable emission in lanthanide coordination polymer gels based on a rationally designed blue emissive gelator. Chemical Communications, 2015, 51(48): 9876–9879
https://doi.org/10.1039/C5CC02709H pmid: 25995095
61 Park J U, Lee H J, Cho W, et al.. Facile synthetic route for thickness and composition tunable hollow metal oxide spheres from silica-templated coordination polymers. Advanced Materials, 2011, 23(28): 3161–3164
https://doi.org/10.1002/adma.201101161 pmid: 21638350
62 Islamoglu T, Atilgan A, Moon S Y, et al.. Cerium(IV) vs zirconium(IV) based metal–organic frameworks for detoxification of a nerve agent. Chemistry of Materials, 2017, 29(7): 2672–2675
https://doi.org/10.1021/acs.chemmater.6b04835
63 Xu G W, Wu Y P, Dong W W, et al.. A multifunctional Tb-MOF for highly discriminative sensing of Eu3+/Dy3+ and as a catalyst support of Ag nanoparticles. Small, 2017, 13(22): 1602996
https://doi.org/10.1002/smll.201602996 pmid: 28418186
64 Malik M A, Wani M Y, Hashim M A. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials. Arabian Journal of Chemistry, 2012, 5(4): 397–417
https://doi.org/10.1016/j.arabjc.2010.09.027
65 Devaraju M K, Honma I. Hydrothermal and solvothermal process towards development of LiMPO4 (M= Fe, Mn) nanomaterials for lithium-ion batteries. Advanced Energy Materials, 2012, 2(3): 284–297
https://doi.org/10.1002/aenm.201100642
66 Gao M R, Xu Y F, Jiang J, et al.. Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chemical Society Reviews, 2013, 42(7): 2986–3017
https://doi.org/10.1039/c2cs35310e pmid: 23296312
67 Byrappa K, Adschiri T. Hydrothermal technology for nanotechnology. Progress in Crystal Growth and Characterization of Materials, 2007, 53(2): 117–166
https://doi.org/10.1016/j.pcrysgrow.2007.04.001
68 Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chemical Reviews, 2003, 103(3): 663–702
https://doi.org/10.1021/cr020060i pmid: 12630849
69 Nüchter M, Ondruschka B, Bonrath W, et al.. Microwave assisted synthesis-acritical technology overview. Green Chemistry, 2004, 6(3): 128–141
https://doi.org/10.1039/B310502D
70 Whittaker A G, Mingos D M P. The application of microwave heating to chemical syntheses. Journal of Microwave Power and Electromagnetic Energy, 1994, 29(4): 195–219
https://doi.org/10.1080/08327823.1994.11688249
71 Yu J C, Hu X, Li Q, et al.. Synthesis and characterization of core–shell selenium/carbon colloids and hollow carbon capsules. Chemistry, 2006, 12(2): 548–552
https://doi.org/10.1002/chem.200500523 pmid: 16163752
72 Bagheri S, Chandrappa K G, Hamid S B A. Facile synthesis of nano-sized ZnO by direct precipitation method. Der Pharma Chemica, 2013, 5(3): 265–270
73 Shamsipur M, Pourmortazavi S M, Hajimirsadeghi S S, et al.. Applying Taguchi robust design to the optimization of synthesis of barium carbonate nanorods via direct precipitation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 423: 35–41
https://doi.org/10.1016/j.colsurfa.2013.01.042
74 Liu Y, Goebl J, Yin Y. Templated synthesis of nanostructured materials. Chemical Society Reviews, 2013, 42(7): 2610–2653
https://doi.org/10.1039/C2CS35369E pmid: 23093173
75 Jung S, Cho W, Lee H J, et al.. Self-template-directed formation of coordination-polymer hexagonal tubes and rings, and their calcination to ZnO rings. Angewandte Chemie International Edition, 2009, 48(8): 1459–1462
https://doi.org/10.1002/anie.200804816 pmid: 19072968
76 Liu F, Xue D. Chemical design of complex nanostructured metal oxides in solution. International Journal of Nanoscience, 2009, 8(6): 571–588
https://doi.org/10.1142/S0219581X09006407
77 Husein M M, Nassar N N. Nanoparticle preparation using the single microemulsions scheme. Current Nanoscience, 2008, 4(4): 370–380
https://doi.org/10.2174/157341308786306116
78 Pileni M P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Materials, 2003, 2(3): 145–150
https://doi.org/10.1038/nmat817 pmid: 12612669
79 Pileni M P. Mesostructured fluids in oil-rich regions: structural and templating approaches. Langmuir, 2001, 17(24): 7476–7486
https://doi.org/10.1021/la010538y
80 López-Quintela M A, Tojo C, Blanco M C, et al.. Microemulsion dynamics and reactions in microemulsions. Current Opinion in Colloid & Interface Science, 2004, 9(3–4): 264–278
https://doi.org/10.1016/j.cocis.2004.05.029
81 Cushing B L, Kolesnichenko V L, O’Connor C J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chemical Reviews, 2004, 104(9): 3893–3946
https://doi.org/10.1021/cr030027b pmid: 15352782
82 Kreilgaard M. Influence of microemulsions on cutaneous drug delivery. Advanced Drug Delivery Reviews, 2002, 54(Suppl 1): S77–S98
https://doi.org/10.1016/S0169-409X(02)00116-3 pmid: 12460717
83 Lisiecki I, Billoudet F, Pileni M P. Syntheses of copper nanoparticles in gelified microemulsion and in reverse micelles. Journal of Molecular Liquids, 1997, 72(1–3): 251–261
https://doi.org/10.1016/S0167-7322(97)00041-X
84 Carné A, Carbonell C, Imaz I, et al.. Nanoscale metal–organic materials. Chemical Society Reviews, 2011, 40(1): 291–305
https://doi.org/10.1039/C0CS00042F pmid: 21107481
85 Suslick K S, Flannigan D J. Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. Annual Review of Physical Chemistry, 2008, 59(1): 659–683
https://doi.org/10.1146/annurev.physchem.59.032607.093739 pmid: 18393682
86 Suslick K S. Sonochemistry. Science, 1990, 247(4949): 1439–1445
https://doi.org/10.1126/science.247.4949.1439 pmid: 17791211
87 Xu H, Zeiger B W, Suslick K S. Sonochemical synthesis of nanomaterials. Chemical Society Reviews, 2013, 42(7): 2555–2567
https://doi.org/10.1039/C2CS35282F pmid: 23165883
88 Gedanken A. Using sonochemistry for the fabrication of nanomaterials. Ultrasonics Sonochemistry, 2004, 11(2): 47–55
https://doi.org/10.1016/j.ultsonch.2004.01.037 pmid: 15030779
89 Suslick K S, Price G J. Applications of ultrasound to materials chemistry. Annual Review of Materials Science, 1999, 29(1): 295–326
https://doi.org/10.1146/annurev.matsci.29.1.295
90 Zaitoun M A, Al-Tarawneh S. Effect of varying lanthanide local coordination sphere on luminescence properties illustrated by selected inorganic and organic rare earth complexes synthesized in sol–gel host glasses. Journal of Luminescence, 2011, 131(8): 1795–1801
https://doi.org/10.1016/j.jlumin.2011.03.039
91 Cui Y, Yue Y, Qian G, et al.. Luminescent functional metal–organic frameworks. Chemical Reviews, 2012, 112(2): 1126–1162
https://doi.org/10.1021/cr200101d pmid: 21688849
92 Kim J S, Rieter W J, Taylor K M L, et al.. Self-assembled hybrid nanoparticles for cancer-specific multimodal imaging. Journal of the American Chemical Society, 2007, 129(29): 8962–8963
https://doi.org/10.1021/ja073062z pmid: 17602632
93 Taylor K M L, Rieter W J, Lin W. Manganese-based nanoscale metal–organic frameworks for magnetic resonance imaging. Journal of the American Chemical Society, 2008, 130(44): 14358–14359
https://doi.org/10.1021/ja803777x pmid: 18844356
94 Shang K X, Sun J, Hu D C, et al.. Six Ln(III) coordination polymers with a semirigid tetracarboxylic acid ligand: bifunctional luminescence sensing, NIR-luminescent emission, and magnetic properties. Crystal Growth & Design, 2018, 18(4): 2112–2120
https://doi.org/10.1021/acs.cgd.7b01565
95 Della Rocca J, Lin W. Nanoscale metal–organic frameworks: magnetic resonance imaging contrast agents and beyond. European Journal of Inorganic Chemistry, 2010, 2010(24): 3725–3734
https://doi.org/10.1002/ejic.201000496
96 Della Rocca J, Liu D, Lin W. Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Accounts of Chemical Research, 2011, 44(10): 957–968
https://doi.org/10.1021/ar200028a pmid: 21648429
97 Ma Z, Moulton B. Recent advances of discrete coordination complexes and coordination polymers in drug delivery. Coordination Chemistry Reviews, 2011, 255(15–16): 1623–1641
https://doi.org/10.1016/j.ccr.2011.01.031
98 An J, Geib S J, Rosi N L. Cation-triggered drug release from a porous zinc-adeninate metal–organic framework. Journal of the American Chemical Society, 2009, 131(24): 8376–8377
https://doi.org/10.1021/ja902972w pmid: 19489551
99 Leong W L, Vittal J J. One-dimensional coordination polymers: complexity and diversity in structures, properties, and applications. Chemical Reviews, 2011, 111(2): 688–764
https://doi.org/10.1021/cr100160e pmid: 20804195
100 Vittal J J, Ng M T. Chemistry of metal thio- and selenocarbo-xylates: precursors for metal sulfide/selenide materials, thin films, and nanocrystals. Accounts of Chemical Research, 2006, 39(11): 869–877
https://doi.org/10.1021/ar050224s pmid: 17115727
101 Masoomi M Y, Morsali A. Applications of metal–organic coordination polymers as precursors for preparation of nano-materials. Coordination Chemistry Reviews, 2012, 256(23–24): 2921–2943
https://doi.org/10.1016/j.ccr.2012.05.032
102 Meilikhov M, Yusenko K, Esken D, et al.. Metals@MOFs-loading MOFs with metal nanoparticles for hybrid functions. European Journal of Inorganic Chemistry, 2010, 2010(24): 3701–3714
https://doi.org/10.1002/ejic.201000473
103 Jiang H L, Xu Q. Porous metal–organic frameworks as platforms for functional applications. Chemical Communications, 2011, 47(12): 3351–3370
https://doi.org/10.1039/c0cc05419d pmid: 21290059
[1] Maria COROŞ, Florina POGĂCEAN, Lidia MĂGERUŞAN, Crina SOCACI, Stela PRUNEANU. A brief overview on synthesis and applications of graphene and graphene-based nanomaterials[J]. Front. Mater. Sci., 2019, 13(1): 23-32.
[2] Ramanathan SARASWATHY. Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1--xRuxO2 by the microemulsion method[J]. Front. Mater. Sci., 2017, 11(4): 385-394.
[3] V. CHELLASAMY, P. THANGADURAI. Structural and electrochemical investigations of nanostructured NiTiO3 in acidic environment[J]. Front. Mater. Sci., 2017, 11(2): 162-170.
[4] Lan-Zheng REN, Jin-Xiu WANG. A simple hydrothermal route to fabrication of single-crystalline silver nanoplates using poly(vinyl pyrrolidone)[J]. Front Mater Sci Chin, 2010, 4(4): 407-410.
[5] Lan-Zheng REN, Jin-Xiu WANG. Facile one-pot preparation of silver nanowires using an alcohol ionic liquid[J]. Front Mater Sci Chin, 2010, 4(4): 398-401.
[6] En-Rong LI, Qian-Jun ZHANG, Wei WANG, Qing-Wen ZHU, Long BA, . Fabrication of mesoporous silica/carbon black nanospheres and load-sensitive conducting rubber nanocomposites[J]. Front. Mater. Sci., 2010, 4(1): 52-56.
[7] SHI Yao-wu, YU Yang, XIA Zhi-dong, LEI Yong-ping, LI Xiao-yan, GUO Fu, LIU Jian-ping. Study on Al-Cu-Si braze containing small amount of rare earth erbium[J]. Front. Mater. Sci., 2008, 2(4): 351-356.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed