Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2010, Vol. 4 Issue (1) : 52-56    https://doi.org/10.1007/s11706-010-0015-2
Research articles
Fabrication of mesoporous silica/carbon black nanospheres and load-sensitive conducting rubber nanocomposites
En-Rong LI,Qian-Jun ZHANG,Wei WANG,Qing-Wen ZHU,Long BA,
State Key Laboratory of Bioelectronics, School of Biomedical Engineering and Department of Physics, Southeast University, Nanjing 210096, China;
 Download: PDF(290 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Mesoporous silica nanospheres (MSNs) with regular pores have been fabricated using cetyltrimethylammonium bromide (CTAB) as surfactant in high pH solution. The average size of the MCM-41 silica nanospheres was reduced from 95 to 48€nm, while the concentration of CTAB increases from 7.7 to 11.5mmol/L. Carbon black was deposited on MSNs using hexane as the carbon source. By mixing such materials with silicone rubber, the composites become conducting when equivalent carbon volume fraction is higher than a certain region, which is less sensitive to the morphology of the deposited carbon. The improved piezoresistance repeatability has been found on the composite sample of MSNs/carbon plus extra high conducting carbon black. The load and strain sensitive range up to 0.35MPa and 0.10, respectively, with less resistance fluctuation during multiple press loading cycles.
Keywords nanomaterials      mesoporous silica      conducting rubber      piezoresistance      
Issue Date: 05 March 2010
 Cite this article:   
En-Rong LI,Wei WANG,Qian-Jun ZHANG, et al. Fabrication of mesoporous silica/carbon black nanospheres and load-sensitive conducting rubber nanocomposites[J]. Front. Mater. Sci., 2010, 4(1): 52-56.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-010-0015-2
https://academic.hep.com.cn/foms/EN/Y2010/V4/I1/52
Hussain M, Choa Y-H, Niihara K. Fabrication process and electrical behaviorof novel pressure-sensitive composites. Composites Part A: Applied Science and Manufacturing, 2001, 32(12): 1689–1696

doi: 10.1016/S1359-835X(01)00035-5
Yamaguchi K, Busfield J J C, Thomas A G. Electrical and mechanicalbehavior of filled elastomers. I. The effect of strain. Journal of Polymer Science Part B: Polymer Physics, 2003, 41(17): 2079–2089

doi: 10.1002/polb.10571
Busfield J J C, Thomas A G, Yamaguchi K. Electrical and mechanical behavior of filled rubber. III. Dynamic loading and the rate of recovery. Journal of Polymer Science Part B: Polymer Physics, 2005, 43(13): 1649–1661

doi: 10.1002/polb.20452
Zhou J F, Song Y H, Zheng Q, et al. Percolation transition and hydrostaticpiezoresistance for carbon black filled poly(methylvinylsilioxane)vulcanizates. Carbon, 2008, 46(4): 679–691

doi: 10.1016/j.carbon.2008.01.028
Lalli J H, Hill A, Subrahmanyan S, et al. Metal Rubber sensors. Proceedings of SPIE, 2005, 5758: 333–342

doi: 10.1117/12.597738
Wang X J, Chung D D L. Short carbon fiber reinforced epoxy coating as a piezoresistive strain sensorfor cement mortar. Sensors and ActuatorsA: Physical, 1998, 71(3): 208–212

doi: 10.1016/S0924-4247(98)00187-3
Knite M, Teteris V, Kiploka A, et al. Polyisoprene-carbonblack nanocomposites as tensile strain and pressure sensor materials. Sensors and Actuators A: Physics, 2004, 110(1–3): 142–149

doi: 10.1016/j.sna.2003.08.006
Snyder W E, Clair J. Conductive elastomers as sensor for industrial parts handling equipment. IEEE Transaction on Instrumentation and Measurement, 1978, (IM-27): 94–102

doi: 10.1109/TIM.1978.4314628
Shimojo M, Namiki A, Ishikawa M, et al. A tactile sensor sheet usingpressure conductive rubber with electrical-wires stitched method. IEEE Sensors Journal, 2004, 4(5): 589–596

doi: 10.1109/JSEN.2004.833152
Wang L H, Ding T H, Wang P. Thin flexible pressure sensor array basedon carbon black/silicone rubber nanocomposite. IEEE Sensors Journal, 2009, 9(9): 1130–1135

doi: 10.1109/JSEN.2009.2026467
Sandler J K W, Kirk J E, Kinloch I A, et al. Ultra-low electricalpercolation threshold in carbon-nanotube-epoxy composites. Polymer, 2003, 44(19): 5893–5899

doi: 10.1016/S0032-3861(03)00539-1
Chen L, Chen GH, Lu L. Piezoresistive behavior study on finger-sensingsilicone rubber/graphite nanosheet nanocomposites. Advanced Functional Materials, 2007, 17(6): 898–904

doi: 10.1002/adfm.200600519
Abyaneh M K, Kulkarni S K. Giant piezoresistive response in zinc-polydimethylsiloxane compositesunder uniaxial pressure. Journal of Physics D: Applied Physics, 2008, 41(13): 135405 (7 pages)
Balberg I. Tunneling and nonuniversal conductivity in compositematerials. Physical Review Letters, 1987, 59(12): 1305–1308

doi: 10.1103/PhysRevLett.59.1305
Wu J Y, Zhou C X, Zhu Q W, et al. Composite silicone rubber ofhigh piezoresistance repeatability filled with nanoparticles. Science in China Series E:Technological Sciences, 2009, 52(12): 3497–3503

doi: 10.1007/s11431-009-0318-7
Cai Q, Luo Z S, Pang W Q, et al. Dilute solution routes to variouscontrollable morphologies of MCM-41 silica with a basic medium. Chemistry of Materials, 2001, 13(2): 258–263

doi: 10.1021/cm990661z
He Q J, Cui X Z, Cui F M, et al. Size-controlled synthesis ofmonodispersed mesoporous silica nano-spheres under a neutral condition. Microporous and Mesoporous Materials, 2009, 117(3): 609–616

doi: 10.1016/j.micromeso.2008.08.004
Ndungu P, Godongwana Z G, Petrik L F, et al. Synthesis of carbonnanostructured materials using LPG. Microporous and Mesoporous Materials, 2008, 116(1–3): 593–600

doi: 10.1016/j.micromeso.2008.05.030
Jun S, Joo S H, Ryoo R, et al. Synthesis of new, nanoporouscarbon with hexagonally ordered mesostructure. Journal of the American Chemical Society, 2000, 122(43): 10712–10713

doi: 10.1021/ja002261e
Zhai Y P, Wan Y, Cheng Y, et al. The influence of carbon sourceon the wall structure of ordered mesoporous carbons. Journal of Porous Materials, 2008, 15(5): 601–611

doi: 10.1007/s10934-007-9139-x
Lelong G, Bhattacharyya S, Kline S, et al. Effect of surfactantconcentration on the morphology and texture of MCM-41 materials. The Journal of Physical Chemistry C, 2008, 112(29): 10674–10680

doi: 10.1021/jp800898n
[1] Yimin ZHOU, Qingni XU, Chaohua LI, Yuqi CHEN, Yueli ZHANG, Bo LU. Hollow mesoporous silica nanoparticles as nanocarriers employed in cancer therapy: A review[J]. Front. Mater. Sci., 2020, 14(4): 373-386.
[2] Maria COROŞ, Florina POGĂCEAN, Lidia MĂGERUŞAN, Crina SOCACI, Stela PRUNEANU. A brief overview on synthesis and applications of graphene and graphene-based nanomaterials[J]. Front. Mater. Sci., 2019, 13(1): 23-32.
[3] Honghong ZOU, Lei WANG, Chenghui ZENG, Xiaolei GAO, Qingqing WANG, Shengliang ZHONG. Rare-earth coordination polymer micro/nanomaterials: Preparation, properties and applications[J]. Front. Mater. Sci., 2018, 12(4): 327-347.
[4] Ramanathan SARASWATHY. Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1--xRuxO2 by the microemulsion method[J]. Front. Mater. Sci., 2017, 11(4): 385-394.
[5] V. CHELLASAMY, P. THANGADURAI. Structural and electrochemical investigations of nanostructured NiTiO3 in acidic environment[J]. Front. Mater. Sci., 2017, 11(2): 162-170.
[6] Lan-Zheng REN, Jin-Xiu WANG. A simple hydrothermal route to fabrication of single-crystalline silver nanoplates using poly(vinyl pyrrolidone)[J]. Front Mater Sci Chin, 2010, 4(4): 407-410.
[7] Lan-Zheng REN, Jin-Xiu WANG. Facile one-pot preparation of silver nanowires using an alcohol ionic liquid[J]. Front Mater Sci Chin, 2010, 4(4): 398-401.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed