Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci Chin    2010, Vol. 4 Issue (4) : 398-401    https://doi.org/10.1007/s11706-010-0104-2
COMMUNICATION
Facile one-pot preparation of silver nanowires using an alcohol ionic liquid
Lan-Zheng REN(), Jin-Xiu WANG
Department of Chemistry and Life Science, Chuzhou University, Chuzhou 239000, China
 Download: PDF(268 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Silver nanowires have attracted considerable attention in the past decade, due to their unique physical and chemical properties, which can lead to a wide variety of potential applications. In this work, silver nanowires have been fabricated using an alcohol ionic liquid by a one-step method in the absence of any extra capping agents. The method is based on the reduction of AgNO3 by 1-(3-hydroxylpropyl)-3-methylimidazolium tetrafluoroborate (C3OHmimBF4) in an aqueous solution at 180°C for 18?h. The products were characterized by a scanning electron microscope (SEM), transmission electron microscope (TEM), energy-dispersive X-ray spectrograph (EDS), and powder X-ray diffractometry (XRD). The experimental results indicate that both reaction temperature and special properties of C3OHmimBF4 play important roles in the formation of silver nanowires.

Keywords silver nanowires      ionic liquid      nanomaterials     
Corresponding Author(s): REN Lan-Zheng,Email:lzhren@hotmail.com   
Issue Date: 05 December 2010
 Cite this article:   
Jin-Xiu WANG,Lan-Zheng REN. Facile one-pot preparation of silver nanowires using an alcohol ionic liquid[J]. Front Mater Sci Chin, 2010, 4(4): 398-401.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-010-0104-2
https://academic.hep.com.cn/foms/EN/Y2010/V4/I4/398
Fig.1  X-ray diffraction pattern of the as-prepared silver nanowires
Fig.2  Typical SEM images of the as-prepared silver nanowires with low magnification and high magnification
Fig.3  TEM image and EDS spectrum of the as-prepared silver nanowires
Fig.4  SEM images of silver products obtained at 140°C and obtained using 0.1 mmol of AgNO (Other reaction conditions were the same, as the sample shown in Fig. 2)
Fig.5   Reaction equation of AgNO and COHmimBF
1 Chen J Y, Wiley B J, Xia Y N. One-dimensional nanostructures of metals: large-scale synthesis and some potential applications. Langmuir , 2007, 23(8): 4120–4129
doi: 10.1021/la063193y
2 Chiment?o R J, Kirm I, Medina F, . Different morphologies of silver nanoparticles as catalysts for the selective oxidation of styrene in the gas phase. Chemical Communications , 2004, (7): 846–847
doi: 10.1039/b400762j
3 Hu X H, Chan C T. Photonic crystals with silver nanowires as a near-infrared superlens. Applied Physics Letters , 2004, 85(9): 1520–1522
doi: 10.1063/1.1784883
4 Tao A R, Yang P D. Polarized surface-enhanced Raman spectroscopy on coupled metallic nanowires. The Journal of Physical Chemistry B , 2005, 109(33): 15687–15690
doi: 10.1021/jp053353z
5 Aslan K, Lakowicz J R, Geddes C D. Metal-enhanced fluorescence using anisotropic silver nanostructures: critical progress to date. Analytical and Bioanalytical Chemistry , 2005, 382(4): 926–933
doi: 10.1007/s00216-005-3195-3
6 Zong R L, Zhou J, Li Q, . Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane. The Journal of Physical Chemistry B , 2004, 108(43): 16713–16716
doi: 10.1021/jp0474172
7 Huang M H, Choudrey A, Yang P D. Ag nanowire formation within mesoporous silica. Chemical Communications , 2000, (12): 1063–1064
doi: 10.1039/b002549f
8 Govindaraj A, Satishkumar B C, Nath M, . Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles. Chemistry of Materials , 2000, 12(1): 202–205
doi: 10.1021/cm990546o
9 Sun Y G, Yin Y D, Mayers B T, . Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chemistry of Materials , 2002, 14(11): 4736–4745
doi: 10.1021/cm020587b
10 Zhang D B, Qi L M, Yang J H, . Wet chemical synthesis of silver nanowire thin films at ambient temperature. Chemistry of Materials , 2004, 16(5): 872–876
doi: 10.1021/cm0350737
11 Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical Reviews , 1999, 99(8): 2071–2084
doi: 10.1021/cr980032t
12 Antonietti M, Kuang D B, Smarsly B, . Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angewandte Chemie , 2004, 43(38): 4988–4992
doi: 10.1002/anie.200460091
13 Fei Z F, Geldbach T J, Zhao D B, . From dysfunction to bis-function: on the design and applications of functionalised ionic liquids. Chemistry- A European Journal , 2006, 12(8): 2122–2130
doi: 10.1002/chem.200500581
14 Kim T Y, Kim W J, Hong S H, . Ionic-liquid-assisted formation of silver nanowires. Angewandte Chemie , 2009, 121(21): 3864–3867
doi: 10.1002/ange.200806379
15 Migowski P, Teixeira S R, Machado G, . Structural and magnetic characterization of Ni nanoparticles synthesized in ionic liquids. Journal of Electron Spectroscopy and Related Phenomena , 2007, 156-158: 195–199
doi: 10.1016/j.elspec.2006.11.027
16 Tsuji M, Hashimoto M, Nishizawa Y, . Microwave-assisted synthesis of metallic nanostructures in solution. Chemistry- A European Journal , 2005, 11(2): 440–452
doi: 10.1002/chem.200400417
17 Tsuji M, Hashimoto M, Nishizawa Y, . Preparation of gold nanoplates by a microwave-polyol method. Chemistry Letters , 2003, 32(12): 1114–1115
doi: 10.1246/cl.2003.1114
18 Toshima N, Yonezawa T. Bimetallic nanoparticles- novel materials for chemical and physical applications. New Journal of Chemistry , 1998, 22(11): 1179–1201
doi: 10.1039/a805753b
19 Yamamoto T, Wada Y, Sakata T, . Microwave-assisted preparation of silver nanoparticles. Chemistry Letters , 2004, 33(2): 158–159
doi: 10.1246/cl.2004.158
20 Branco L C, Rosa J N, Moura Ramos J J, . Preparation and characterization of new room temperature ionic liquids. Chemistry- A European Journal , 2002, 8(16): 3671–3677
doi: 10.1002/1521-3765(20020816)8:16<3671::AID-CHEM3671>3.0.CO;2-9
[1] Maria COROŞ, Florina POGĂCEAN, Lidia MĂGERUŞAN, Crina SOCACI, Stela PRUNEANU. A brief overview on synthesis and applications of graphene and graphene-based nanomaterials[J]. Front. Mater. Sci., 2019, 13(1): 23-32.
[2] Honghong ZOU, Lei WANG, Chenghui ZENG, Xiaolei GAO, Qingqing WANG, Shengliang ZHONG. Rare-earth coordination polymer micro/nanomaterials: Preparation, properties and applications[J]. Front. Mater. Sci., 2018, 12(4): 327-347.
[3] Ramanathan SARASWATHY. Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1--xRuxO2 by the microemulsion method[J]. Front. Mater. Sci., 2017, 11(4): 385-394.
[4] V. CHELLASAMY, P. THANGADURAI. Structural and electrochemical investigations of nanostructured NiTiO3 in acidic environment[J]. Front. Mater. Sci., 2017, 11(2): 162-170.
[5] Wenlan WU,Junbo LI,Sheng ZOU,Jinwu GUO,Huiyun ZHOU. Construction of Au@Pt core--satellite nanoparticles based on in-situ reduction of polymeric ionic liquid protected gold nanoparticles[J]. Front. Mater. Sci., 2017, 11(1): 42-50.
[6] Ju LIANG,Wenlan WU,Junbo LI,Chen HAN,Shijie ZHANG,Jinwu GUO,Huiyun ZHOU. Synthesis and self-assembly of temperature and anion double responsive ionic liquid block copolymers[J]. Front. Mater. Sci., 2015, 9(3): 254-263.
[7] Lan-Zheng REN, Jin-Xiu WANG. A simple hydrothermal route to fabrication of single-crystalline silver nanoplates using poly(vinyl pyrrolidone)[J]. Front Mater Sci Chin, 2010, 4(4): 407-410.
[8] En-Rong LI, Qian-Jun ZHANG, Wei WANG, Qing-Wen ZHU, Long BA, . Fabrication of mesoporous silica/carbon black nanospheres and load-sensitive conducting rubber nanocomposites[J]. Front. Mater. Sci., 2010, 4(1): 52-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed